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Abstract

We describe a fast numerical method for non-separable elliptic equations in
self-adjoin form on irregular adaptive domains. One of the most successful results
in numerical PDE is developing rapid elliptic solvers for separable EPDEs, for ex-
ample, Fourier transformation methods for Poisson problem on a square, however,
it is known that there is no rapid elliptic solvers capable of solving a general non-
separable problems [8]. It is the purpose of this paper to present an iterative solver
for linear EPDEs in self-adjoint form. The scheme discussed in this paper solves
a given non-separable equation using a sequence of solutions of Poisson equations,
therefore, the most important key for such a method is having a good Poison solver.
High performance is achieved by using a fast high-order adaptive Poisson solver
which requires only about 500 floating point operations per gridpoint in order to
obtain machine precision for both the computed solution and its partial derivatives.
A few numerical examples have been presented.

1 Introduction

Many problems in science and engineering require the solutions of second order linear
elliptic partial differential equations (EPDESs). Thus, developing numerical solvers for
these problems has been one of the central areas of numerical analysis. In sixties, the
early era of numerical PDE, Finite Difference Method (FDM) had been taken an impor-
tant role in this kind of effort in general. At the same time, many fast algorithms had
been studied to get the best computational performance for certain class of problems,
for example, Poisson equations on rectangle-like domain [9, 25, 26, 24]. The resulting
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performance was outstanding and fast numerical methods have been still studied since
then, however, such tools are limited, in many cases, to the separable problems with
constant coefficients on regular grids. Flexibility in discretizing a problem and handling
a complex geometry becomes more and more important for practical applications and
it is one of the main reasons why Finite Element Method (FEM) and its offsprings such
as Domain Decomposition (DD) or Multi-Grid (MG) methods become more and more
popular these days [1, 3, 6].

In this paper, we describe a fast numerical method for non-separable elliptic equa-
tions in self-adjoin form on irregular adaptive domains and provide some computational
examples. The basic idea of the numerical method is that non-separable equations could
be iteratively solved using the solutions of simpler separable constant coefficient equa-
tions. Such ideas have been proposed by many researchers [2, 4, 7, 8, 21] in eighties and
nineties. In order to obtain good performance for this iterative method, a fast elliptic
solver for separable equations is a key component and the ratio of computational cost
for the target problem to that for the separable problem should be bigger that the
number of iteration.

In section 2, we describe an iterative scheme to solve non-separable EPDE in self-
adjoin form. The iterative scheme used in this paper has been already proposed by
Brackbill and Forslund [4] and is one of many possible choices to develop a fast al-
gorithm. The most salient feature of our implementation is that we use a new fast
high-order adaptive Poisson solver proposed by Greengard and Lee [11, 17]. The solver
described in section 3 requires only about 500 floating point operations per grid-point
which is only a few time more expensive than a second order nonadaptive method
based on Fourier method or cyclic reduction, yet it can easily obtain machine precision
for both the computed solution and its partial derivatives. In section 4, we present a
few numerical examples to demonstrate the usefulness of the Poisson solver for more
general elliptic equations.

2 An iterative numerical procedure

In this section, we describe an iterative procedure, to solve a self-adjoint nonseparable
generalization of Poisson’s equation

o [A S| + 5L (B S| = s, (1)

u
x

where A and B are nonzero functions with the same sign in a two dimensional domain
Q). We assume that S satisfy, if necessary, certain compatibility conditions to solve the
equation (1), for example, the integral of S over the domain matches total flux in case
of Poisson Neumann problem. The procedure which will be described below in details
has been proposed in [2, 4] and a successful implementation of the algorithm depends
on fast and accurate Poisson solver for the given computational domain.
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The vector field generated by the solution of (1) can be split into the curl-free part
V¢ of (Auy, Bu,) and the divergence-free part V x ¢ of (u,,u,) as follows:

Au, = ¢x+Awy (2)
Buy = ¢y_B¢ac- (3)

Equation (1) can be rewritten, by substitution, as a system of two Poisson equations
Ap = S(z,y) = (Ady), + (BYz), (4)
s = (50) ~(3%) o)
with the compatible boundary conditions

(desdy) - V¢ = (dg,dy) - (Auy, Buy) (6)
(dz,dy) -V = (0,0) (7)

where (d,d,) denotes normal (or tangential) vector to the boundary when Neumann
(or Dirichlet) boundary condition is given. (This kind of boundary type allows solutions
with constant differences and can be uniquely determined with an additional boundary
data.)

The numerical solution of the system (4),(5) can be computed iteratively as follows:

AP = S(ry) — (Avf) +(Buf), (8)
ot = () - (o) )
x Y

with initial guess ¢° = 0,4° = 0 for k = 0. At each step in the iteration, new estimate
for u is given by

(ko) = (gt + b 0k — 0k ). (10)

And this process is continued until some desired convergence are achieved, for example,
the relative iteration convergence error is smaller than given tolerance e.

IVu? = VurH[G < €[ Vut([?, (11)

where || - ||q denotes for L? norm in the domain €.

3 A fast Poisson solver using FMM

In this section, we briefly describe a direct, adaptive numerical method for the Poisson
equation in order to solve (8) and (9) numerically. The solutions of Poisson problems,



30 June-Yub Lee

in general, have to satisfy not only the Poisson equation in the domain Q C R? but also
some linear boundary conditions on 0€2. Such equations can be solved easily using a
decomposition method, widely used for constant coefficient linear differential equations,
which first determines the solution of the equation in the absence of physical boundaries
and then solves an auxiliary equation later to enforce the boundary condition.

Therefore, we will concentrate our attention, in the first part of this section, only
to the solution of the Poisson equation in the absence of physical boundaries for the
source distribution f whose support is bounded in unit square D in R?,

Au, = f in RZ (12)

And then we will later describe the auxiliary Laplace equation to match the boundary
conditions for u = u, + up,

Aup =0 in Q, 85,? ~ g_azv on 09 (13)
o = =%

where g or h is the Dirichlet or the Neumann data on the boundary and 8% denotes out
normal derivative on the boundary 0€2. And we will also explain how to numerically
solve the equations efficiently using a boundary integral method.

3.1 A volume integral method for the Poisson problem

There are many approaches to solve the Poisson problem (12). A few special techniques
exist especially for this problem under special circumstances [9], for examples, spectral
methods using fast Fourier transformation or cyclic reduction methods on rectangular-
like or tensor-product meshes. However, its usage is very restricted for the problems
with more complex discretizations. Many of finite difference and finite element methods
are well studied and they take advantage of the fact that the Laplacian A is operator
local which makes it possible to develop efficient numerical methods.

Unfortunately, these standard methods are not completely robust when the source
distribution has a complex structure, the grid is highly non-uniform, and high accuracy
of its derivatives is required. And a great deal of researches are still going on in this
field. In order to overcome these difficulties, the Poisson problems are solved using a
rather new approach which gives the exact solution « in the form of a volume integral

ux) = 5 [ Toglx —yI/(y)dy. (14)

There are many advantages to this approach and readers interested in complete discus-
sion of the algorithm are referred to the paper by Greengard and Lee [11].

We now briefly outline mathematical results to this volume integral approach. As-
sume that the source distribution f is supported inside a square domain D embedded
in a quad-tree structure with M leaf nodes D; and f is smooth on the scale of each
such small square D;. The main result can be summarized in the following theorem :
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Theorem 3.1 Let the source distribution f be given as a K-th order Chebyshev poly-
nomial f; for each leaf node D; for i = 1,..., M of the quad tree embedded on D.
Then, for x € D;, the solution to the Poisson equation (12) is given by

M
u(x) = uf (x) + Y uf(x). (15)
j=1

where uj(x) is a polynomial satisfying Au$ = f; locally (inside D;) and u"}(x) is a
harmonic function in D; defined in terms of single and double layer potentials generated

by the boundary values of uj(x) and a%uj(x) along the interfaces of subdomain D;.

While uf(x) depends only on f; and the computation cost linearly depends on
number of boxes M, the evaluation of the harmonic patches by direct summation over
M boxes requires order O(MN) work for N target points, which is very expensive.
The algorithm described below uses the Fast Multipole Method (FMM) to reduce the
computation cost to order O(N). We briefly summarize the implementation of the
theorem which consists of four steps.

Suppose a square box D contains the support of the right hand side f. Starting from
So,0 = D, a quad-tree structure is obtained by dividing a square subdomain S;; into
four equal size subdomains Sy 4544, for d = 0,1,2,3. In order to achieve adaptivity,
this process continues until the source term f is locally smooth enough on each of the
leaf nodes S;; aliased as D;. To describe the algorithm, we define two concepts: the
neighbors and the interaction list for each square ;5. The neighbors N consist of
those squares at the same (or coarser, if none) refinement level with which it shares a
boundary point and the interaction list Z; ; consists of those squares at the same (or
coarser, if none) refinement level in the area covered by the neighbors of S;;’s parent,
excluding the neighbors of ;.

1. First local solve: Given any 2-dimensional Chebyshev polynomial f;(x), find a
polynomial u;(x) such that Auj(x) = f;j(x) and then compute a multipole ex-
pansion ®;(x) at the center y; representing the harmonic patch u?(x) for each
of leaf node boxes D;, j =1,---, M.

S

ou? uf(w
®;(x) = Re (L/ ! (w) log(w — x) dl, + L/8 () dw) (16)

271 Jop; On 271 Jop; w — X

2. FMM upward pass: Once the multipole expansion ®; for each leaf node is ob-
tained, multipole expansions ®;; for internal nodes S;j; can be computed by
collecting the information from their four children Siyi 4x4q, d = 0,1,2,3. The
multipole for S;; represents Zué‘(x) of all D; inside of S;, for x & N .

3
D p(x) = > u?(x) = Oy ap+a(x) for x € N (17)
D]‘CSlyk d=0
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3. FMM downward pass: The local expansion ¥; ;(x) at x € S;;, is a combination
of its parent’s W;_1 tjp0r(k/4)(X) and @;(x) for all D; € Z; .

Up(x) = > ul(x) =V fiorr/ay(X) + Y. Pyp(x) for x € Sy (18)
D;jCNYy, Sk CIik

since /\/fk = J\ff_l Floor(k/4) U Z; ;. The local expansion W o(x) for the root node is
zero by definition since Nfio is empty and the hierarchical quad-tree data structure
allows a recursive procedure of the summation from top to bottom.

4. Final local solve: Once the ¥;(x) for all leaf nodes D; are computed, the har-
monic patches ij\il u;‘(x) of the leaf node D; is the sum of W;(x), u?(x), and
Zué‘(x) for D; € N;.

M
Zué‘(x) =V (x) + uf‘(x) + Z ué’(x) for x € D; = S; 1, (19)
7j=1 DjC./V‘l,k

To save computational time, instead of evaluating uj and the harmonic patches
at all of the desired points x, we just evaluate them at the boundary points of
D; containing x and then solve the local Poisson equation again, but with the
correct boundary data.

We end this section by estimating the CPU time required. Letting M be the number
of leaf nodes and K be the desired order of accuracy, we construct a (scaled) K X
K Chebyshev mesh on each leaf node D; for i = 1,...,M. The total number of
discretization points is given by N = MK?. The computational cost of the Poisson
solver, to get the solution u(z) at the N = M K2 grid points on M leaf nodes with K x K

grid points each, is of order N <4K + 2}7(—”22
multipole expansion (around 20 for single and 40 for double precision computation).
The most salient feature of the present algorithm is its speed. The sixteenth order
K = 16 accurate implementation requires about 500 floating point operations per grid
point. It is only a few times more expensive than a second order nonadaptive method
based on Fourier analysis or cyclic reduction, yet it can easily obtain machine precision

for both the computed solution and its partial derivatives.

+ K 2) where p is the number of terms in the

3.2 A layer potential method for the Laplace equation

The classical solution of the interior Dirichlet problem (13) is obtained by representing
the solution as a double-layer potential

B
u(x) = /F o GO0y (6))u(s) ds for y(s) €T = 00 (20)
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where G(x,y) = % log|x — y| is the fundamental solution of the Laplace equation
in two space dimension. Since the representation automatically satisfies the Laplace
equation, it remains to determine the density function p to match the the boundary
condition. If we take the limit as  approaches to a boundary point zg € I', u satisfies
the jump relation

o(r0) = gir0) + [T Gloe y(a)uts) s 1)

or equivalently, (%I + K)u = g where g is a given Dirichlet boundary data and K is
the double layer potential operator with %—f as a kernel.
Similarly, the solution of the interior Neumann problem (13) is represented via a

single layer potential,
- [ Gyl ds (22)

whose jump relation provides

o) = —3p(x0) + [ 50 —Glxo,y()p(s) ds, (23)

0
2 r Ovx,

or equivalently, (—%I + K*)p = h where h is the given Neumann boundary data and
K* denotes the normal derivative operator of the single layer potential. It is easy to
verify that K* is the adjoint of double layer potential operator K.

This potential theory based approach is one of the early results in the history of
partial differential equation theory and it has many well-known advantages. First, the
Laplace equation is reformulated on lower dimensional set thus the problem solving
procedure deals with only the boundary points. Second, the formulation is indifferent
to geometry, therefore, there is no difference between bounded interior problems and
unbounded exterior problems. However, less well emphasized feature of the approach
is that it leads to well-conditioned linear systems independent to discretization scheme
and order of accuracy which makes it possible to get a stable, high order of accuracy
numerical method. Despite of the advantages, the integral equation methods can be
useful only with special numerical tools since the integral kernel G(z,y) is non-smooth
near the boundary and the integral operator K or K* is not local. We now describe a
fast method [22] to solve the Neumann boundary value problem (23) using the mathe-
matical tools above.

Suppose I" consists of M disjoint components I'y, k = 1,---, M (Note that M =1
if the domain is simply connected) and we select N boundary points on the k-th
boundary component which are equispaced in arclength. Let pf is charge density on
o¥ then the trapezoidal rule for (23) gives,

1 &, d
l
2 2_2_2\721

In ]mf — | pf = h(z}). (24)
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Care must be taken when :UéC = a:i to use the appropriate limit %Fc(mf) in place of
651 In |x§ — x| where & denotes the curvature of the boundary curve. It is well known

that the trapezoidal rule with equispaced points on simply connected smooth boundary
curves provides superalgebraically converging solution p as N.

The linear system (24) for p! is solved with a conjugate gradient-type algorithm
such as Generalized Minimum Residual method (GMRES) and it requires only a few
iterations (about 10 or less iteration with 10 complicate boundary curves) to get full
precision of accuracy and the number of iteration is independent of the number of
boundary points N. What we need to have for the kind of computation is a fast
numerical tool for dense matrix-vector multiply in order to compute the field due to a
collection of IV charge sources at the source locations themselves. It can be performed in
O(N) operations instead of O(N?) direct summation using the Fast Multipole Method
(FMM) [5, 12] which is already described in subsection 3.1. Once integral equation
is solved, we need to evaluate the solution at many interior points. For this purpose,
Mayo’s Method presented in [19] may accelerate the computation time in optimal order
with small constant though we did not use the method for our current implementation.

4 Experimental Results

The numerical method described in the previous sections has been implemented in GNU
C++ and GNU Fortran, C++ for adaptive data structure management and Fortran
for numerical computation. In this section, we present performance results obtained
from experiments using a SparcStation 2.

Example 1 (Decomposition of the solution). The first example we start with is a
simple problem with a prescribed solution u(z,y) which decays exponentially fast near
the boundary and the corresponding source term S(x,y).

u(e,y) = e EEHY (25)
S(z,y) = w[A(wz®—1)+4B(4wy? —1)] e~ 3 (@17 (26)

where w = 256, A =1,B = 4.

Since the smoothness of the elliptic solution solely depends on the smoothness
of the coefficient and the source functions, it is possible to automatically generate
a computational domain by making the local truncation errors of A(z,y), B(x,y),
and S(z,y) in K-th order Chebyshev series on each of leaves D; to be less than a
user provided constant tolcpepy. The order of local Chebyshev expansion and the
truncation error bound for this example are set to be K = 16 and tolchery = 107S.
Figure 1 shows the given source function S(zx,y) and the computed solution u(z,y) on
the computational domain [—0.5,0.5] x [—0.5,0.5] on which 64 boxes or equivalently
16 % 16 * 64 = 16384 grid points are allocated with three levels of adaptivity.
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The plotted solution and ¢(x,y), ¥ (z,y) is obtained after 12 times of iteration which
takes 108 seconds using a SparcStation II and the estimated L?(Q) converges error

% is about 3.4 - 1074 The V¢(z,y) is the cure-free part of the stretched

gradient field (Aug, Buy) and V x1)(z,y) is the divergence-free part of (uz, uy) as shown
in Figure 1.

Figure 1: The source function S(z,y), the solution u(x,y) and ¢(z,y), ¥ (x,y) defined
in (4), (5) of Example 1. The three numbers printed on the lower right corners show
the minimum, the step, and the maximum values of the contour lines.

Example 2 (Constant coefficient case). We now examine the convergence of the
iterative method for the constant coefficient problems with the prescribed solution
u(z,y) = e~200"+%) which makes no boundary effect and the corresponding source
function S(z,y), in order to simplify the discussion. Figure 2 shows the numerical
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results of the convergence error for the constant coefficient problem
At (2, y) + Buyy(z,y) = S(z,y) (27)

with various choice of constant B for fixed A = 1. For the experiment, we use adaptive
domains with 136 boxes for K = 8 and 28 boxes for K = 16 to make the local truncation
errors for S(x,%) to be less than 107°.

Figure 2: The leftmost figure shows the convergence results with 136 boxes at K = 8
and the rightmost figure draws those with 28 boxes at K = 16 for Example 2.

Note that the convergence depends only on the ratio of A to B and the role of A and
B are interchangeable in the algorithm, therefore, the result for A = 1, B = 2 represents
those for A =100, B =200, and A =2, B =1,s0oon. And A =1, B = 1 represents the
Poisson problem, thus we can get the desired precision with single iteration.

To analize the convergence result, we rewrite the functions of the iterative method
in terms of Fourier components cos(mmx) cos(nmy), then (8), (9) becomes

1 mn
k+1 k
1 1 mn
= (5 2) it (29)

Therefore,

2
1 B A mn 2
k / / k
mtll T M2+ n2 Fmn = ( A E) (m2 + n2> Prn (30)
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which shows the iterative method for constant coefficients has linear convergence with
asymptotic convergence constant A,

2 2
o[ B A <ﬂ>2<l B_jAy L omn 1
a A B m2+n2) — 4 A B stiee m24+n2 — 2

and the iterative sequence is guaranteed to converge when 3 — 2V/2 < % < 34 2V2.
From this example, we can conclude that linear transformation defined below may
accelerate the convergence significantly for the constant or slowly varying coefficient
problems.

(31)

(32)

ro ;oo
0 A(:E,y) 0 0 |:B(x7y) 0 (x/7y/) :S(:c’,y/)

o | A oY )} Yoyl B oyt
where A" = HA<m7y)HL1(Q)7 B' = HB(m7y)HL1(Q)7 T = \/I{I,‘l, and y=v B/y/'

Example 3 (Scalar conductivity problem). We consider an example where A(z,y)
and B(z,y) are identical functions representing scalar conductivity,

V- a(z,y)Vu(z, y)] = S(z,y) (33)

for a(z,y) = (1+ 1)+ (1 — L)cos(2r(z — y)), S(z,y) = zy(l — 42?)*(1 — 4y*)%.
The convergence of iterative methods for such a problem strongly depends on the
ratio, which is x for this example, of the maximum value to the minimum value of the
conductivity a(z,y) over the domain [7, 10]. Table 1 summarizes the convergence result
with various choices of k. The result demonstrates that the numerical scheme works
very well even problems with wide variance of conductivity 16 < x < 64.

K # of convergence error after k-th of iteration
boxes k=2 k=4 k=6 k=8 k=10 k=12
2 136 | 1.7-107% | 4.4.107% | N.A. N.A. N.A. N.A.
4 256 | 3.2.1073 | 1.3-107° N.A N.A. N.A. N.A.
8 280 | 2.0.1072 | 4.1-107* | 9.0-107% | 2.1.10°7 | N.A. N.A.
16 | 298 |8.31072 | 6.0-1073 | 4.9-107% | 4.3-107° | 4.0-107% | 3.8-1077
32 | 301 |27107'{6.0107%2 | 151072 | 4.1.1073 | 1.2.1073 | 3.5-10~*
64 | 307 |6.810°'|4.2.10°t|3.0.10°! | 2.3.107* | 1.9.107! | 1.5-107*
128 | 310 1.14 1.25 1.43 1.56 1.63 1.67

Table 1: Convergence results for Example 3 with respect to x. # of boxes denotes the
total number of boxes on the adaptive tree to get tolcnevpy = 10~* and the number of
points, for example, in 256 boxes is 256 K2 = 65536 for K = 16. N.A. means that the
computation has been stopped after the desired accuracy 1079 is achieved.
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