• Title/Summary/Keyword: Poisson approximation

Search Result 76, Processing Time 0.023 seconds

An Approximate Analysis of the Queueing Systems with Two Deterministic Heterogeneous Servers

  • 김정섭
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.2
    • /
    • pp.31-39
    • /
    • 1999
  • A new approximation method for finding the steady-state probabilities of the number of customers present in queueing systems with Poisson arrivals and two servers with different deterministic service times with infinite waiting room capacity is developed. The major assumption made for the approximation is that the residual service times of the servers have mutually independent uniform distributions with densities equal to the reciprocals of the respective service times. The method reflects the heterogeneity of the servers only through the ratio of their service times, irrespective of the actual magnitudes and difference. The transition probability matrix is established and the steady-state probabilities are found for a variety of traffic intensities and ratios of the two service times; also the mean number of customers present in the system and in the queue, and server utilizations are found and tabulated. The method was validated by simulation and turned out to be very sharp.

  • PDF

Finite Element Analysis of Incompressible Transient Navier-Stokes Equation using Fractional-Step Methods (Fractional-Step법을 이용한 비압축성 비정상 Navier-Stokes 방정식의 유한 요소해석)

  • Kim, Hyung-Min;Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.458-465
    • /
    • 2003
  • The main objective of the research is to develop a research code solving transient incompressible Navier-Stokes equation. In this research code, Adams-Bashforth method was applied to the convective terms of the navier stokes equation and the splitted equations were discretized spatially by finite element methods to solve the complex geometry problems easily. To reduce the divergence on the boundaries of pressure poisson equation due to the unsuitable pressure boundary conditions, multi step approximation pressure boundary conditions derived from the boundary linear momentum equations were used. Simulations of Lid Driven Flow and Flow over Cylinder were conducted to prove the accuracy by means of the comparison with results of the previous workers.

The East Moving Least Square Reproducing Kernel Approximation and Point Collocation Method (고속 최소 자승법을 이용한 점별 계산법)

  • 김용식;김도완
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.567-574
    • /
    • 2002
  • 새로운 자유격자 관사를 이용한 점별 계산법을 제안한다 이동 최소 자승법을 이용한 기저의 생성과 기저의 근사적 미분을 동시에 구해내는 자유격자 근사를 유도하여, 직접 점별 계산법을 고안하였다. 기존의 자유 격자 법에서는 기저의 직접 미분을 사용하므로 높은 계산 비용이 필요하지만, 이 논문에서 제안된 방법은 기저의 생성과 동시에 기저의 근사적 미분을 구하게 된다. 또한 기존의 방법에서 필요하였던, 창 함수(window function)의 미분가능성을 연속성으로 대치할 수 있으므로, 주어진 문제에 따라 다양한 창 함수를 이용할 수 있다. 기저의 재생성과 interpolation의 수렴성을 소개하고, 수치 예제로서, Poisson 문제를 통해 이 방법의 유효함을 보인다.

  • PDF

Approximation on the Distribution of the Overshoot by the Property of Erlang Distribution in the M/En/1 Queue (M/En/1 대기모형에서 얼랑분포의 성질을 이용한 오버슛의 분포에 대한 근사)

  • Lee, Sang-Gi;Bae, Jongho
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.1
    • /
    • pp.33-47
    • /
    • 2015
  • We consider an $M/E_n/1$ queueing model where customers arrive at a facility with a single server according to a Poisson process with customer service times assumed to be independent and identically distributed with Erlang distribution. We concentrate on the overshoot of the workload process in the queue. The overshoot means the excess over a threshold at the moment where the workload process exceeds the threshold. The approximation of the distribution of the overshoot was proposed by Bae et al. (2011); however, but the accuracy of the approximation was unsatisfactory. We derive an advanced approximation using the property of the Erlang distribution. Finally the newly proposed approximation is compared with the results of the previous study.

Analysis of Tunneling Current for Bottom Gate Voltage of Sub-10 nm Asymmetric Double Gate MOSFET (10 nm이하 비대칭 이중게이트 MOSFET의 하단 게이트 전압에 따른 터널링 전류 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.163-168
    • /
    • 2015
  • This paper analyzed the deviation of tunneling current for bottom gate voltage of sub-10 nm asymmetric double gate MOSFET. The asymmetric double gate MOSFET among multi gate MOSFET developed to reduce the short channel effects has the advantage to increase the facts to be able to control the channel current, compared with symmetric double gate MOSFET. The increase of off current is, however, inescapable if aymmetric double gate MOSFET has the channel length of sub-10 nm. The influence of tunneling current was investigated in this study as the portion of tunneling current for off current was calculated. The tunneling current was obtained by the WKB(Wentzel-Kramers-Brillouin) approximation and analytical potential distribution derived from Poisson equation. As a results, the tunneling current was greatly influenced by bottom gate voltage in sub-10 nm asymmetric double gate MOSFET. Especially it showed the great deviation for channel length, top and bottom gate oxide thickness, and channel thickness.

Two-Dimensional Simulation of MOS Transistors Using Numerical Method (수치해석 방법에 의한 2차원적인 MOS Transistor의 시뮬레이션에 관한 연구)

  • 정태성;경종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.93-101
    • /
    • 1985
  • A two-dimensional numerical analysis progranl, called SOMOS ( simulation of MO5 transistors), has been developed for the simulation of MOSFET's with various channel lengths and bias conditions. The finite difference approximation of the fundamental equa-tions are formulated using Newton's method for Poisson's equation and the divergence theorem for the continuity equation. For the solution of the lincariBed equations, SOR (successive over relaxation) method and Gummel's algorithm have been employed, The total simulation time for oar operating point is varying between 30 sec. and 4 min. on VAX 11/780 depending on bias conditions, The nonuniform mesh was generated and refined automatically to account for various bias values and the potential distributions.

  • PDF

(Continuous-Time Queuing Model and Approximation Algorithm of a Packet Switch under Heterogeneous Bursty Traffic) (이질적 버스트 입력 트래픽 환경에서 패킷 교환기의 연속 시간 큐잉 모델과 근사 계산 알고리즘)

  • 홍석원
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.416-423
    • /
    • 2003
  • This paper proposes a continuous-time queuing model of a shared-buffer packet switch and an approximate algorithm. N arrival processes have heterogeneous busty traffic characteristics. The arrival processes are modeled by Coxian distribution with order 2 that is equivalent to Interruped Poisson Process. The service time is modeled by Erlang distribution with r stages. First the approximate algorithm performs the aggregation of N arrival processes as a single state variable. Next the algorithm discompose the queuing system into N subsystems which are represented by aggregated state variables. And the balance equations based on these aggregated state variables are solved for by iterative method. Finally the algorithm is validated by comparing the results with those of simulation.

A simple method to compute a periodic solution of the Poisson equation with no boundary conditions

  • Moon Byung Doo;Lee Jang Soo;Lee Dong Young;Kwon Kee-Choon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.286-290
    • /
    • 2005
  • We consider the poisson equation where the functions involved are periodic including the solution function. Let $R=[0,1]{\times}[0,l]{\times}[0,1]$ be the region of interest and let $\phi$(x,y,z) be an arbitrary periodic function defined in the region R such that $\phi$(x,y,z) satisfies $\phi$(x+1, y, z)=$\phi$(x, y+1, z)=$\phi$(x, y, z+1)=$\phi$(x,y,z) for all x,y,z. We describe a very simple method for solving the equation ${\nabla}^2u(x, y, z)$ = $\phi$(x, y, z) based on the cubic spline interpolation of u(x, y, z); using the requirement that each interval [0,1] is a multiple of the period in the corresponding coordinates, the Laplacian operator applied to the cubic spline interpolation of u(x, y, z) can be replaced by a square matrix. The solution can then be computed simply by multiplying $\phi$(x, y, z) by the inverse of this matrix. A description on how the storage of nearly a Giga byte for $20{\times}20{\times}20$ nodes, equivalent to a $8000{\times}8000$ matrix is handled by using the fuzzy rule table method and a description on how the shape preserving property of the Laplacian operator will be affected by this approximation are included.

A Study on the Current-Voltage Characteristics of a Short-Channel GaAs MESFET Using a New Linearly Graded Depletion Edge Approximation (선형 공핍층 근사를 사용한 단채널 GaAs MESFET의 전류 전압 특성 연구)

  • 박정욱;김재인;서정하
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.6-11
    • /
    • 2000
  • In this paper, suggesting a new linearly -graded depletion edge approximation, the current-voltage characteristics of an n-type short-channel GaAs MESFET device has been analyzed by solving the two dimensional Poisson's equation in the depletion region. In this model, the expressions for the threshold voltage, the source and the drain ohmic resistance, and the drain current were derived. As a result, typical Early effect of a short channel device was shown and the ohmic voltage drop by source and drain contact resistances could be explained. Furthermore our model could analyze both the short-channel device and the long-channel device in a unified manner.

  • PDF

Design and Performance Evaluation of an Assemble-To-Order System (주문- 조립시스템의 설계 및 성능평가)

  • 박찬우;이효성
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.4
    • /
    • pp.41-65
    • /
    • 2002
  • We study a multi-component production/inventory system in which individual components are made to meet various demand types. We assume that the demands arrive according to a Poisson process, but there is a fixed probability that a demand requests a particular kit of different components. Each component is produced by a flow line with several stations in which the processing times of each station follow a two-stage Coxian distribution. The production of each component is operated by an independent base-stock policy with blocking. We assume that the time needed to assemble final products follows a general distribution and the capacity of an assembling facility is sufficiently large. The objective of this study is to obtain key performance measures such as the distribution of the number of each orders for each final product and the mean time of fulfilling a customer order. The basic principle of the proposed approximation method is to decompose the original system into a set of subsystems, each subsystem being associated with a flow line. Each subsystem is analyzed in isolation using a Marie's method. An iterative procedure is then used to determine the unknown parameters of each subsystem. Numerical results show that the accuracy of the approximation method is acceptable.