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An Approximate Analysis of the Queueing Systems

with Two Deterministic Heterogeneous Servers

Jeongseob Kim*

8 Abstract &

A new approximation method for finding the steady-state probabilities of the number of customers present in
gueueing systems with Poisson arrivals and two servers with different deterministic service times with infinite
waiting room capacity is developed. The major assumption made for the approximation is that the residual
service times of the servers have mutually independent uniform distributions with densities equal to the
reciprocals of the respective service times. The method reflects the heterogeneity of the servers only through the
ratio of their service times, irrespective of the actual magnitudes and difference. The transition probability matrix
is established and the steady-state probabilities are found for a variety of traffic intensities and ratios of the
two service times: also the mean number of customers present in the system and in the queue, and Server
utilizations are found and tabulated. The method was validated by simulation and turned out to be very sharp.

1. Introduction

Queueing systems with heterogeneous ser-
vers are very difficult to analyze. Even though
there are some exceptions, studies with some
closed form expressions for the usual perfor-
mance measures are mostly limited to the
systems with Poission arrivals and exponential
servers. In this paper we present a simple
approximation method to compute the steady-

state probabilities of the number of customers

present in queueing systems with Poisson
armivals, two servers with different deter—
ministic service times, and waiting room of
infinite capacity. In what follows, the subscript
i to the server description in the usual notation
of queueing system, for instance, M/Ms,
indicates that the service rates of the servers
are not necessarily identical.

Early works on heterogeneous server queue
focus on the impact of heterogeneity on the

performance of the system. Gumbel [4] was the
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first to consider a queueing system with het-
erogeneous servers. Gumbel obtained ex-
pressions for the usual expected measures for
M/My/s system where customers select ran-
domly any idle server. A nondimensional ratio,
V2 ioi(si— %/ 20 5o 14y, where g, is mean
service rate of server i, is used as a measure of
heterogeneity in analyzing the error incurred in
assigning each server the arithmetic mean u
with expected number in the system as a
criterion. It is shown that the larger the
heterogeneity of the servers (even at constant
mean rate) the larger the waiting line. It is also
seen that the error is quite small for a far
extent of variability among the servers. Ancker
and Gafarian [1] investigated the problem posed
by Gumbel [4] further. They set an upper limit
on the queue size and allowed customers to re—
nege while waiting for service. Various steady—
state results were obtained.

Several authors considered systems with
different rules of assigning arriving customers
of single class to different servers. Lemoine [9)
considered a queue with heterogeneous servers
in which arriving customers are assigned to
servers according to an autonomous Markov
chain, which is a generalization of random ser-
ver selection. Establishing stability conditions,
Lemoine derived stationary distributions for
waiting times and the system response times of
successive customers. He also obtained limits
for the expected utilization and the expected
number of customers in the system. Cooper [2]
considered an M/M;/s queue with arbitrarily
numbered servers, in which customers arrive
according to a state dependent Poisson process
and are served by the lowest-numbered idle

server. This generalization of server selection

encompasses several arrival processes and
queue disciplines: for examples, balking, finite
waiting room. He obtained explicit forms to
compute the utilization of each server and the
probability distribution of the number of cus-
tomers waiting in the queue, without explicitty
solving the system of balance equations which
usually arises.

The problem of assigning multiple class of
customers to heterogeneous servers was also
considered by some authors (Winston [15,16,17],
Derman et al. [3]). Winston [15,16] considered
optimal rules for assigning several classes of
customers to heterogeneous servers which
minimize a discounted reward of a continuous
time Markov decision process superimposed on
the queueing system, in which the distribution
of a customer’'s service time is dependent on
both the class of the customer and the type of
server to which he/she is assigned. He pres—
ented conditions that ensure that the discounted
number of service completions is maximized by
assigning customers with longer service time to
faster servers. Winston [17] modified the as-
sumption about the distribution of service times
in his earlier work [15); the distribution of a
customer’s service time depends only his/her
class. It is shown that the long-term expected
reward earned over an infimte horizon depends
on a single critical number.

Heterogeneity among servers raises control
issues to optimize some performance measures,
usually to minimize some cost function. The
main ideas are to utilize the faster servers as
efficiently as possible using slower servers as
aids, to determine the service capacities of the
servers to optimize some performance measures,

and to decide some policy for operating the
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queueing system. Several authors studied the
so—called “threshold” service discipline under
which if the number of customers waiting for
service is less than m, the slow server remains
idle, and only is invoked if the threshold is
surpassed, in which case the customer in the
(m+1)-th position in the queue goes to the slow
server (Krishnamoorti [6], Larsen {7], Larsen and
Agrawala [8], Lin and Kumar [10], lliadis and
Lien [5]). Larsen [7] and Larsen and Agrawala
[8] conjectured that the optimal queue discipline
that minimizes the sojourn time in an M/M,/2
queue is of threshold type, and analyzed the
performance of this discipline in detail. It is
shown that the higher the ratio of the service
rates, the more improvement is provided through
threshold discipline. No significant improvement
is noted until this ratio exceeds two, however.
Lin and Kumar [10} provided a formal proof for
Larsen's conjecture.

Some authors studied the optimization of
service rates with some objective function.
Singh [11] studied M/M;/2 with ordered ser—
vers and balking. Singh derived exact closed
form solutions to determine the rate of the slow
server to minimize the average queue length,
average number in system. He also obtained a
necessary and sufficient condition for the het-
erogeneous server system to be better than the
corresponding homogeneous system with ser—
vice rate of arithmetic mean. Singh [12] later
generalized his work to M/M,/3. In a multi~
server Markovian queue with no waiting room
and with ordered selection of servers, Tahara
and Nishida [13] found that the optimal service
rates of each server which minimize the rate of
lost customers are positive and different for

each server.

Although the above (limited) survey implies
certain amount of research on queueing sys-
tems with heterogeneous servers, no study has
been reported for queueing systems with de—
terministic service time. In this paper (in
Section 2) we present a simple discretization
method to approximately compute the steady-
state probabilities of the number of customers
present in queueing systems with Poisson ar-
rivals, two servers with different deterministic
service times, and a waiting room of infinite
capacity. In doing so, we first define various
notations and the states of the involved sto-
chastic system, and then set up the usual
balance equations for Markov Chains. The
simultaneous equations are solved by an iter—
ative method and the results are compared with
those from simulation to validate our approxi-

mation method.

2. The queue M/D./2

We consider a queue with Poisson arrival
process with parameter A, two servers with
heterogeneous deterministic service times D
and D» (D; < D), time units, and a waiting
room of infinite capacity. Upon arriving if a
customer finds both servers busy, he/she joins
the common queue; if only one server is
available he/she selects that server; if hboth
servers are free he/she select server 1, the

faster server.

The deterministic service times lead us to the

following observations.

® Since the service times are constant, any
customer in service at server [ at some time

t will have left the system at time t+D;
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e The customers present at time t+D; are
those customers who (1) were waiting in
the queue at time ¢, or (2) were under ser-
vice at time t by server 2, or (3) arrived
during (t,t+Dy].

These observations suggest a way of ap-
proximating the behavior of the system-
discretizing the continuous system by sampling
every D; units of time. Let x(8)=(ij,k) denote
the state of the system at time ¢, where [ and j
denote the state of servers 1 and 2, respec-
tively. These indices will take a value of 1 if
the corresponding server is busy, 0 otherwise.
The third index k represents the number of
customers waiting in the queue. Then we get
the state space S={(ijk) |(0,0,0), (0,1,0), (1,0,0),
(11,1, n=0} and possible transitions from

time t to t+D; as following :

* (0,00)—x & S\0,10},
e (100), (010, (1,1,0) —x €S,
e (11.1)—x & S\H0,000},

e (11n)—01m), m=n-2, n-1, n ntl,.;2<n

Let Yi(0) and Ya(r), (Y1()>0, Y6)>0), be the
random variables representing the residual
service times of server 1 and 2, respectively, at
an arbitrary sampling point ¢ if the corre-
sponding server is busy at that moment. We
assume these two random vanables are mu-
tually independent and have uniform distribution
with density 1/D1 and 1/D-, respectively. Since
the service times are determunistic, these as-
sumed distributions tend to spread wider than
actual. Verifying this assumption is not trivial
partly because the servers are not always busy

so that the underlying stochastic process is not

of a renewal type. But assuming renewal pro-
cess, it can be easily shown that the residual

service time is a uniform random variable by

B =% [ (1-sc— D)ax

:{t/D if + <D
1 if D<¢ (D

where
B(t) = Cumulative distribution function of the

residual service time,

o0 =] i e

To establish the system of balance equations
of transitions among the states, we enumerate
by careful probabhilistic reflection, for each state
x(t+Dy) at time t+Dy, all possible source states
x(¢t) at time t and the corresponding events
which make the transitions as shown in Table
1. In our problem the events are the residual
service times of servers at time ¢ and the
number of customers arriving during (¢, t+Di].
In Table 1 the notation n € T denotes the event
that n customers arrive during a time interval
T. For example, 0 € (¢, t+Y1(t)] denotes that
when server 1 is busy at time ¢ no new
customers arrive from time f until it finishes
the work. In particular when the interval T is
(¢, t+Di], the event j € (f, t+Y1(®)] is sim-
plified by E; for notational convenience.

Taking some transitions into state x(¢+
D1=(1,1,0) as examples, we explain the tran-
sitions enumerated in Table 1. For the tran-
sitions into x(¢t+1)=(1,1,0), the residual service
time of the servers, if they are busy at time ¢,
and the number of customers arriving in the
interval (¢, t+D] determine the transitions. The
possible originating states at time ¢ are (0,0,0),
(1,00, (0,1,0), (1,1,0), (1,1,1), and (1,1,2). Let us
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take three origin states from these six states.

{Table 1> The state transitions and the
corresponding events

x(t+Dh) x(t) Events
000) | Es
000 (I,O,O)_4 I

0,100 |Vl < DyNEy

(L1LO) (Yole) < DiNky

000) | I

(1,00) 10t +Y1IN1€u+Y (., t+1n]
L 010 o < DNk ]
/ (1,00 IYio<¥olp) < DiOVEy
1 (1.1,0) U<y MOse, e+Y1)]

N1EE Y0, e+ D

(1L [ Yn<yun < Dy Ey
(1000 [1et, ¢ IN0e@ Y, £
010 YA > DINE {
‘ 0,1,0) (L10) (YuU)>DeN E UYun<yiin Ml |

B e, PO N0sY i, +y)

L LD [Ydo < DINE
000) | Fo
(1,00 | B
(

(11n), 0100 | Yulp) < Dy FEas

nz=0 (L1, | (Y < DiNEys 3 ULYH0 >Dy
O<k<n+1 N Eacid

(1,1L,n+2) 1Y) < DNk

—

® From state x(t)=(1,0,0). Since server 1 will
finish his/her current work before ¢+ D), the
residual service time of server [ is irrele-
vant. If exactly two customers arrive during
(¢, t+ D], we will find the two servers busy
and the waiting room empty at time ¢+ D.

® From state x(£)=(0,1,0). If server 2 does not
finish his/her current work until {+D; and
one new customer arrives during (¢, ¢+ 4],
the state x(¢+Dy) =(1,1,0) will be realized. If
server 2 does finish his/her current work
before t+ D) and two new customers arrive
during (¢, t+Dy], the state x(¢+Dy) =(1,1,0)
will be realized.

e From state x(t)=(1,1,2). Only if server 2

finish his/her current work before ¢+ and

there i1s no new customer arriving during (¢,
t+1h], the state (1,1,0) will be realized.

In addition to the notations defined so far, the

following ones are also used in this paper:

® p,(¢) = the probability that the system is in
state X €S al time ¢

® 7. = the steady state probability that the
system is in state xES

e o= 1/D, +1/D, a given traffic intensity

o o=D/D»
e fB=(1+a)p.

Now, we write the corresponding balance
equation between the state x(t+)=(1,1,0) and

the above mentioned source states as follows:

Polt+Dy)
= Pritx(1)=(0,0,0)) N E2} + Pri(x(1)=(1,0,0)) N E>»}
+Pri(x(£)=(0,1,00) N(Yo(£) > D) M Ey)
+Pri{(x(0)=(0,1,00) N (Yt) < Dy) N Es)
+Prix(O=(1,1,00) N(Yo() > DONEY
+Pri{(x(t)=(1,1,0) N (Yolt) < DM EY
+Prix(0)=(1, 1,1 N0 (Yalt) > D) N Ey}
+Pr{itx()=(1,1,L1) N < DN ED
+ Pritx(0)=(1,1,1) M (Yult) < Dy) N Ey)
= PriEDpoo(t) + PriEstpolt)
+IPr{YA) > DiPHE}+ PriYon) < DOPriE)]
(po(t) + pro(t))
+[PriYa(e) > DIPHE+PriYo) < DiPr{E}
pin()
+Pr{Yae) < DIPriE] pie), 2

where the probabilities of the involved events

can be replaced hy the following relations:
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Pr{E} =e ADYI =e PR
Pr{ Yz(f)(Dl} :DZ/DZ = a

Now, by letting t—> <o in equation (2), we get
the following halance equation for the steady
state probabilities.

R
Ty = 2

+ %ﬂl e 3,8(7{010+ 71'110)

+(O’B+17(1/)@73”111’*&@”;?7[112 (3)

(7o + 7y0)

Applving the above procedure to all other
states, we get the following svstem of balance

equations for the steady state probabilities.

Y -7 -3 -3
Tow=e “myyTe “mytae “mygt+ae my
4)
= Be “mn+(Be P/t ape ”
T = Be “myy+ (Be Tyt aBe “myy

+(2aBe #[3)myy + (ae 412y, (5)

T = (Be” *12)myp+ (1 — @)e” “ryy
+(1‘(1’+03/3)6”37[11()‘*’(a@iﬁ/Z)ﬂ'nl (6)
T iin nt2 —4 n+2 _—8
ng() - 1(8n+§)! oo+ (n-i—g)! T
Jr;a,8+(n+2)(1—ar) gtk

(n+2)! ¢
Rt aB+(n+2—k)(1—a)
+ z, (n+2—AR)!
Bn+l*keiuﬂ']1k+027371'11(7142) (7)

Notice that the equations (4)~(7) are free of
Dy and D» implying that, for a given traffic
intensity o, the heterogeneity in service times
is relevant only through their ratio, irrespective
of the actual magnitudes and difference. This
provides generality of this approach to M/D;/2.

In particular, if Iy = D» = D, it can easily be

shown that equations (4)~(7) reduce to
_ e "(AD)’ <
7Tj*- ]Y :Oﬂk

+§38(;‘+/}20~k)! T 0= @&

where 7; denotes the steady state probability
that there are j customers in the system. This
conforms with the general form of balance
equation of M/D/2 given in Tijms [14].

To solve this system of linear equations for a

specific (o, a), we truncate the number in sys-
tem at some integer K for which 2 ;2,78
is less than some small number ¢ (for example
=10 8), where 7;7"denotes the steady state

probability that j customers are in the system
in the M/My2 queue, which can be easily
obtained using the wusual birth-and-death
process analysis. This truncation is based on

the inequality,
T:,‘-zrj-’“‘ézj‘-i,\»ﬂf"", 1<K (9)

where ﬂf“t denotes the steady state probability

that j customers are in the system in the
M/Dy2 queue, which is intuitively reasonable
by noting that the M/D;/2 queue involves less
variability than the M/M./2 queue. The re-
sulting finite system of linear equations can be
solved effectively by some iterative methods,
for example, Gauss-Seidel method or successive
overrelaxation method, where the probabilities

exp

7;° provide a good starting point for these
algorithms.

To wvalidate our approach, we performed
simulations for various (o, ). For each (o, a),
we have run a simulation for 220,000 arrivals of
which the first 20000 were discarded as warm-
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up and the rest were batched to 10 samples of
equal size. Table 2 compares the results from
the two methods. In Table 2, Pr{Delay] denotes
the probability that an arriving customer finds
hoth servers are busy: E[L;] the mean number
of customers in the system: p; and o> the

utilization of server 1 and 2, respectively. The

37

columns under “DIS” and “SIM” are the results
from discretization and simulation, respectively.
For E[L.], which is often an important perfor-
mance measure for service and manufacturing
systems, Table 2 also contains the standard
deviations o1« of the mean number of custo-

mers in the system obtained from the samples

{Table 2> Validation of the discretization against simulation

Pr{Delay]| ElLJ o1 o

0 a DIS SIM O1s Err(%) DIS SIM DIS SIM
0.1 0.380 0.381 0.018 0.03 0.481 0.479 0.6586 0694
0.2 0.33 0.341 0.020 0.05 0.487 0455 0.566 0.576
03 0322 0.321 0017 067 0.498 0.494 0.506 0515
0.4 0.315 0.316 0.020 025 0512 0.509 0.470 0.482
05 0312 0311 0018 115 0.526 0524 (0448 0452
05 06 0313 0312 07 09 054 0.534 0.434 0.443
07 0314 0314 0.020 075 0.553 0.548 0.425 0.433
0.8 0.317 0.316 0.020 065 0.565 0.562 0.419 0425
09 0.320 0318 0015 082 0577 0.576 0414 0.415
1.0 0323 0323 0.018 006 0.583 0.59% 0412 0.404
0.1 0.500 0501 0.029 046 0583 0.5%0 0.771 0.781
0.2 0.460 0.462 0.031 0.9 0.586 0.583 0.670 0652
03 0442 0.445 0.030 1.07 0.59%6 0.592 0615 063
0.4 0.434 043% 0.032 1.32 0607 0.603 0582 0.598
05 0.431 0.430 0.036 202 0619 0617 0562 0.569

06 06 0.430 0.428 0.027 233 0.631 0.623 0548
0.7 0.431 0.430 0,031 191 0642 0635 0.539 0549
08 0.433 0,431 (3,029 1.72 0633 0646 0533 0.540
09 0.436 0.434 0.030 1.17 0.663 0.660 0530 0532
10 0439 0.440 0.033 -0.25 0673 0632 0527 0521
01 0623 0626 0.054 077 0.686 0.634 0.841 0.833
02 0583 0.5 0.060 1.23 0.683 (0617 0.762 0.780
0.3 0572 057 0.060 275 069 0.690 0.718 073
0.4 0.564 0.366 0.000 319 0.704 0699 0.691 0707
05 0.560 058 0.062 4.30 0,713 0.709 0674 0.630
0.7 06 0559 0561 0.058 294 0.722 0.7 0663 0676
07 0560 0559 0.05 34 0.732 0.724 0655 0.666
08 0.361 05652 0.059 1.89 0.74 0.734 065 066
09 0.563 0563 0050 1.22 0.748 0.745 0.646 0.651
1.0 0.565 0.567 0.061 0.3 0.7%6 0.763 0.644 0639
0.1 0.747 0.749 0.131 217 0,790 0.788 0.0 0910
0.2 0722 0.723 0.121 473 0.791 0.786 0.847 0.858
0.3 0.709 0.713 0.133 4.87 0.79% 0.792 0.816 0831
04 0.702 0.706 3066 0135 564 0.801 0797 0.797 0.810
05 069 0.701 3. 3059 0.142 558 0.808 0.806 0.7 0.793
0.8 06 069 0.698 32 3036 0.123 574 0.814 0.808 0.776 0.7%6
07 (0698 0.698 3 3037 0.130 475 0.821 0.814 0770 0.780
08 0.6% 0693 3.144 3028 0.124 38 0.827 0.820 0.767 0.773
09 | 070 0.700 3009 3042 0.129 1.83 0.832 0.828 0.764 0.768
10 1 07 0.701 3045 3038 0.125 0.23 0.837 0.842 0.763 0.75%6
01 | 083 0.873 6,082 5876 0.690 350 0.8% 0.893 0952 0.957
0.2 0.859 0.8:0 6.187 H8% 0.730 6.20 0.89% 0.892 0.926 0.934
0.3 0.852 0.8% 6.250 D918 0.79% 561 0.897 0.8 0.910 0.920
04 0.848 0851 6.270 0.846 6.11 0.900 0.898 0.899 0910
0.5 0.846 0.845 6.248 0.717 8 0.904 0.901 0.893 0.897
09 06 0.846 0.845 6.190 0.747 7.14 0507 0.903 0.858 0.8
: .7 0.845 0.846 6,008 0.769 5.06 0910 0907 0.8%5 0.891
! 0.8 0.846 0.847 5978 0.827 200 0913 0911 0.833 0.899
09 0.846 0846 5833 0.745 0.83 0916 0913 0.832 0.8%
1.0 0.847 0.846 5665 0712 -1.24 0919 0921 0.831 0.877
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by simulation and the relative percentage errors
Err(%). The relative errors of the mean number
in system are shown to be small and it can be
easily seen that Eus[LJE[Esl L]~ 015, EsmlLi
+ o1 for most of the cases and Eps[l.]E
[EsalLd-2 015, EsalLd+2 0 1] for the remain-
ing few, where the subscripts “DIS” and “SIM”
are clear by context. The maximum relative
errors are 1.15%, 233%, 4.30%, 5.74%, and
874% for p=05, 06, 0.7, 0.8, and 0.9, respec-
tively. Figure 1 shows that the error increases
with the traffic intensity and is bigger at
middle values (0.5, 06) of @ for each p. The
discretization overshoots in almost all cases.
The systematic tendency of the relative errors
implies, at least partially, that the two residual

service times are not independent.

Trafic

8 ntensity
—e—05 -
6 —»—06 -
—a—07 -
2 308 -
—»—09 -

Relative error (%)

[Figure 1] The relative error of the approximation
in terms of E[Ls]

3. Summary

We presented a new intuitive approximation
method for finding the steady-state probabilities
of the number of customers present in queueing
systems with Poisson arrivals and two servers
with different deterministic service times and
infinite capacity waiting room. We established
the system of balance equations based on pro-
babilistic reflections assuming the independence

of residual service times of both servers and
solved numerically. The balance equations are
expressed in terms of the traffic intensity and
the ratio of service times of both servers. The
method was validated by simulation and turned
out to be very sharp.
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