• Title/Summary/Keyword: Pointing

Search Result 668, Processing Time 0.027 seconds

Quantification of Angular Prediction Accuracy for Phased Array Radar Tracking (위상배열레이더 추적 각도예측의 정확도 정량화)

  • Hong, Sun-Mog
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.74-79
    • /
    • 2012
  • Scalar quantification of the angular prediction error covariance matrix is considered for characterizing tracking performances in phased array radar tracking. Specifically, the maximum eigenvalue and the trace of the covariance matrix are examined in terms of consistency in parameterizing the probability of detection, taking antenna beam-pointing losses into account, and it is shown numerically that the latter is more consistent.

AUTOMATION OF ASTRONOMICAL TELESCOPE: II. DEVELOPMENT OF TECHNIQUES, EQUIPMENTS AND SOFTWARES FOR REMOTE CONTROL OF TELESCOPE (천체 망원경의 자동화: II. 망원경 원격 조종 기술, 장비 및 소프트웨어의 개발)

  • Kang, Yong-Woo;Lee, Hyeong-Mok
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.57-73
    • /
    • 1996
  • As a continuing effort to develop an automatic control system for small telescope, we developed the software for telescope control and CCD observations under DOS operating system. For accurate pointing of the telescope in short amount of time, we modelled the angular speed of the telescope by aquadratic function of time (constant acceleration) for the first 15 second and then linear function of time (zero acceleration) aftwewards. By changing the telescope speed from 'slew' to 'fine' before the telescope reaches the desired position, we could achieve the accuracy of a few arcsecond. The CCD control software was written for model CCD-10 of CCD Technology. This CCD can be used for guiding purposes. We also conducted the study for remote control of the telescope using telephone line. Although it cannot be used for real observations at the present form, we succeded in remotely pointing the telescope to desired direction. As faster communication technologies become widely available, simple observations can be made remotely in the near future. Finally we report some observational results made with the present control system.

  • PDF

다목적실용위성 1호 Maneuver Mode에서의 지상관제 DATA 분석

  • Suk, Byong-Suk
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.65-71
    • /
    • 2002
  • KOMPSAT-1 AOCS mode divided into three major mode like Sun, Maneuver, Science Mode. The Maneuver mode consist of attitude hold and Δ-V Burn submode. This paper focus on the analysis of AOCS Maneuver Mode characteristics based on on-orbit playback data. The nadir pointing performance of attitude hold submode and the process for Δ-V Burn firing with plus/ minus 90 degree pitch/ roll maneuvering was verified. And also verified that the on-orbit performance meets the AOCS subsystem specification as designed.

  • PDF

A Study on the Sensory Motor Coordination to Visual and Sound Stimulation (빛과 소리 자극에 대한 지각 운동의 협력에 관한 연구)

  • Kim, Nam-Gyun;Ko, Yong-Ho;Ifukube, T.
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.77-82
    • /
    • 1994
  • We investigated the characteristic of the sensory motor coordination by measuring the hand point ins and the gaze movement to the visual and sound stimulation. Our results showed that the gaze vol ocity to sound stimulation did not depend on stimulation direction, but lagged behind 0.2 sec toward the pheriperal direction to the visual stimulation. Our data showed that to both visual and sound stimulation, the error of hand pointing value increased with an increasement of eccentricity.

  • PDF

Point Ahead Angle(PAA) Estimation and a Control Algorithm for Satellite-Pointing of the Ground Terminal in Satellite-to-Ground Optical Communication (위성-지상간 광통신용 지상단말기의 위성 지향을 위한 PAA 도출 및 제어 알고리즘)

  • Taehyun Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.329-337
    • /
    • 2024
  • Free-space optical communication technology enables the high-speed data transmission and excellent anti-jamming security. We conduct research on satellite-to-ground free-space optical communication links for high-speed transmission of large-capacity surveillance and reconnaissance data. Since the satellite continues to move along its orbit while the optical signal is transmitted between the satellite and the ground, the pointing angle of the beam from the ground terminal needs to be corrected by Point Ahead Angle(PAA) so that the transmitted light reaches the expected location of the satellite. In this paper, we present the algorithm for PAA estimation and control.

Implement of Hand Gesture Interface using Ratio and Size Variation of Gesture Clipping Region (제스쳐 클리핑 영역 비율과 크기 변화를 이용한 손-동작 인터페이스 구현)

  • Choi, Chang-Yur;Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.121-127
    • /
    • 2013
  • A vision based hand-gesture interface method for substituting a pointing device is proposed in this paper, which is used the ratio and size variation of Gesture Region. Proposed method uses the skin hue&saturation of the hand region from the HSI color model to extract the hand region effectively. This method can remove the non-hand region, and reduces the noise effect by the light source. Also, as the computation quantity is reduced by detecting not the static hand-shape recognition, but the ratio and size variation of hand-moving from the clipped hand region in real time, more response speed is guaranteed. In order to evaluate the performance of the our proposed method, after applying to the computerized self visual acuity testing system as a pointing device. As a result, the proposed method showed the average 86% gesture recognition ratio and 87% coordinate moving recognition ratio.

Ka-band Antenna Subsystem Pointing Variation Analysis (Ka 대역 안테나 서브시스템 포인팅 에러 분석)

  • Lee, Yong-Deok;Choe, Jang-Seop;Park, Jae-U;Lee, Seong-Pil
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.32-37
    • /
    • 2006
  • ETRI has been developing the Ka-band Antenna subsystem for COMS(Communications, Ocean, and Meteorological Satellite) which will be launched at the end of 2008. The antenna subsystem employs the two parts: East Panel and West panel of spacecraft. ETRI in cooperation with domestic companies are under design phase for the antenna subsystem development. This paper focuses in the Ka-band reflector pointing error analysis to verify the antenna subsystem performance specification, especially EOC gain variation etc. The analysis performed is that induced by reflector surface deformation as a result of thermo elastic distortion. Beam pattern variations are verified by the use TICRA

  • PDF

Design and Evaluation of a Hand-held Device for Recognizing Mid-air Hand Gestures (공중 손동작 인식을 위한 핸드 헬드형 기기의 설계 및 평가)

  • Seo, Kyeongeun;Cho, Hyeonjoong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.2
    • /
    • pp.91-96
    • /
    • 2015
  • We propose AirPincher, a handheld pointing device for recognizing delicate mid-air hand gestures to control a remote display. AirPincher is designed to overcome disadvantages of the two kinds of existing hand gesture-aware techniques such as glove-based and vision-based. The glove-based techniques cause cumbersomeness of wearing gloves every time and the vision-based techniques incur performance dependence on distance between a user and a remote display. AirPincher allows a user to hold the device in one hand and to generate several delicate finger gestures. The gestures are captured by several sensors proximately embedded into AirPincher. These features help AirPincher avoid the aforementioned disadvantages of the existing techniques. We experimentally find an efficient size of the virtual input space and evaluate two types of pointing interfaces with AirPincher for a remote display. Our experiments suggest appropriate configurations to use the proposed device.

An analysis of Electro-Optical Camera (EOC) on KOMPSAT-1 during mission life of 3 years

  • Baek Hyun-Chul;Yong Sang-Soon;Kim Eun-Kyou;Youn Heong-Sik;Choi Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.512-514
    • /
    • 2004
  • The Electro-Optical Camera (EOC) is a high spatial resolution, visible imaging sensor which collects visible image data of the earth's sunlit surface and is the primary payload on KOMPSAT-l. The purpose of the EOC payload is to provide high resolution visible imagery data to support cartography of the Korean Peninsula. The EOC is a push broom-scanned sensor which incorporates a single nadir looking telescope. At the nominal altitude of 685Km with the spacecraft in a nadir pointing attitude, the EOC collects data with a ground sample distance of approximately 6.6 meters and a swath width of around 17Km. The EOC is designed to operate with a duty cycle of up to 2 minutes (contiguous) per orbit over the mission lifetime of 3 years with the functions of programmable gain/offset. The EOC has no pointing mechanism of its own. EOC pointing is accomplished by right and left rolling of the spacecraft, as needed. Under nominal operating conditions, the spacecraft can be rolled to an angle in the range from +/- 15 to 30 degrees to support the collection of stereo data. In this paper, the status of EOC such as temperature, dark calibration, cover operation and thermal control is checked and analyzed by continuously monitored state of health (SOH) data and image data during the mission life of 3 years. The aliveness of EOC and operation continuation beyond mission life is confirmed by the results of the analysis.

  • PDF

Pointing Accuracy Establishment and Efficiency Measurement of 13.7m Antenna for Observing Cosmic Radio Wave (13.7m 우주전파 관측용 안테나의 지향정도 확립과 효율 측정)

  • Cho, Se-Hyung;Jung, Jae-Hoon;Lee, Young-Ung;Kim, Hyun-Goo;Roh, Duk-Gyoo;Park, Yong-Sun;Kim, Bong-Gyu;Auh, Byung-Ryul;Lee, Chang-Hoon;Yim, In-Sung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.2
    • /
    • pp.18-28
    • /
    • 1989
  • In this paper, we describe a pointing accuracy establishment and efficiency measurement of 13.7 m antenna for observing cosmic radio wave which is in the first stage just after finishing its installation. The initial stage of pointing model, 1 and 2 were set up with the observational data of Sun and Moon which are large in visual diameter and also strong in radio intensity. Based on this model, model 3 and 4 were established within the available operational range, i.e., 3.8" in azimuth deviation, 10.5" in elevation deviation, with the observational data of SiO maser source which is a point source and distributed in overall sky. Both apeture efficiency anhd beam efficiency were measured by observing Venus whose brightness temperature is well-known. The resulting corrected efficiencies were 35% and 50% respectively.

  • PDF