DOI QR코드

DOI QR Code

Point Ahead Angle(PAA) Estimation and a Control Algorithm for Satellite-Pointing of the Ground Terminal in Satellite-to-Ground Optical Communication

위성-지상간 광통신용 지상단말기의 위성 지향을 위한 PAA 도출 및 제어 알고리즘

  • Taehyun Yoon (Ground Technology Research Institute, Agency for Defense Development)
  • 윤태현 (국방과학연구소 지상기술연구원)
  • Received : 2024.01.12
  • Accepted : 2024.03.31
  • Published : 2024.06.05

Abstract

Free-space optical communication technology enables the high-speed data transmission and excellent anti-jamming security. We conduct research on satellite-to-ground free-space optical communication links for high-speed transmission of large-capacity surveillance and reconnaissance data. Since the satellite continues to move along its orbit while the optical signal is transmitted between the satellite and the ground, the pointing angle of the beam from the ground terminal needs to be corrected by Point Ahead Angle(PAA) so that the transmitted light reaches the expected location of the satellite. In this paper, we present the algorithm for PAA estimation and control.

Keywords

Acknowledgement

이 논문은 2023년 정부의 재원으로 수행된 연구 결과임.

References

  1. K. Anbarasi, C. Hemanth, R. G. Sangeetha, "A review on channel models in free space optical communication systems," Optics & Laser Technology, Vol. 97, pp. 161-171, 2017.
  2. S. Kumar and N. Sharma, "Emerging Military Applications of Free Space Optical Communication Technology: A Detailed Review," Journal of Physics: Conference Series, Vol. 2161, No. 1, p. 012011, 2022.
  3. J. C. Juarez, et al., "Free-Space Optical Communications for Next-generation Military Networks," IEEE Communications Magazine, Vol. 44, No. 11, pp. 46-51, November, 2006.
  4. K. Park, "Ultra-low orbit satellites for surveillance and reconnaissance," SPREC Global Issue Report, Vol. 9, pp. 20-23, September, 2023.
  5. P. L. Thompson, et al., "NASA's LCOT(low-cost optical terminal) FSOS(free-space optical subsystem): concept, design, build, and test," Proc. SPIE 12413, Free-Space Laser Communications XXXV, 124130X, 2023.
  6. celestrak.org/NORAD/elements/
  7. D. Ly, et al., "Correcting TLEs at epoch: Application to the GPS constellation," J. Space Saf. Eng., Vol. 7, Issue 3, pp. 302-306, September, 2020.
  8. R. R. Bate, "Fundamentals of Astrodynamics: Second Edition," Dover Publication, Mineola, New York, 2020.
  9. D. A. Vallado, "Fundamentals of Astrodynamics and Applications - Fifth Edition," Portland, Oregon, 2022.
  10. B. R. Townsend, "Space Based Satellite Tracking and Characterization Utilizing Non-Imaging Passive Sensors," Air Force Institute of Technology, 2008.
  11. B. D. Tapley, et al., "Statistical Orbit Determination," Academic Press, Massachusetts, 2004.
  12. D. Hobbs and P. Bohm, "Precise Orbit Determination for Low Earth Orbit Satellites," Annals of the MarieCurie Fellowship Association, Vol. 4, pp. 1-7, 2006.
  13. W. K. Lee, et al., "Orbit Determination Of GPS and KOREASAT 2 Satellite Using Angle-Only Data and Requirements for Optical Tracking System," J. Astron. space Sci. Vol. 21, pp. 221-232, 2004.
  14. G. H. Spencer and M. V. R. K. Murty, "General Ray-Tracing Procedure," J. Opt. Soc. Am, Vol. 52, pp. 672-678, 1962.
  15. R. Fletcher, "Practical methods of optimization," John Wiley & Sons, Inc., New York, 1987.
  16. A. Bjorck, "Numerical Methods for Least Squares Problems," SIAM, Philadelphia, 1996.
  17. N. Qian, "On the momentum term in gradient descent learning algorithms," Neural Networks, Vol. 12, Issue 1, pp. 145-151, 1999.
  18. M. D. Zeiler, "ADADELTA: An Adaptive Learning Rate Method," arXiv:1212.5701, 2012.