• Title/Summary/Keyword: Point-kernel method

Search Result 101, Processing Time 0.03 seconds

A Study on the Implementation of the Multi-Process Structured ISDN Terminal Adaptor for Sending the Ultra Sound Medical Images (다중처리 구조를 갖는 초음파 의료영상 전송용 ISDN(Integrated Services Digital Network) TA(Terminal Adaptor) 구현에 관한 연구)

  • 남상규;이영후
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.317-324
    • /
    • 1994
  • This paper proposed a new method in the implementation of ISDN (integrated services digital network) LAPD (link access procedure on the D-channel) and LAPB (link access procedure on the B-channel) protocols. The proposed method in this paper implement ISDW LAPD protocol through multi-tasking operating system and adopt a kernel part that is changed operating system to target board. The features of implemented system are (1) the para.llel processing of the events generated at each layer, as follows (2) the supporting necessary timers for the implementation of ISDW LAPD protocol from the kernel part by using software, (3) the recommanded SAP (Service Access Point) from CCITT was composed by using port function in the operating system. With the proposed method, the protocols of ISDH layerl, layer2 and layer3 (call control) were implemented by using the kernel part and related tests were carried out by connecting the ISDH terminal simulator to ISDN S-interface system using the ISDN LAPD protocol The results showed that ISDW S-interface terminals could be discriminated by TEI (Terminal Equipment Identifier) assignment in layer 2 (LAPD) and the message transmission of layer 3 was verified by establishing the multi-frame transmission and then through the path established by the LAPD protocol, a user data was tranfered and received on B-channel with LAPB protocol Thererfore, as new efficient ISDN S-interface environment was implemented in the thesis, it was verified that the implemented system can be utilized by connecting ISDW in the future to transfer a medical image data.

  • PDF

Nonparametric Detection of a Discontinuity Point in the Variance Function with the Second Moment Function

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.591-601
    • /
    • 2005
  • In this paper we consider detection of a discontinuity point in the variance function. When the mean function is discontinuous at a point, the variance function is usually discontinuous at the point. In this case, we had better estimate the location of the discontinuity point with the mean function rather than the variance function. On the other hand, the variance function only has a discontinuity point. The target function in order to estimate the location can be used the second moment function since the variance function and the second moment function have the same location and jump size of the discontinuity point. We propose a nonparametric detection method of the discontinuity point with the second moment function. We give the asymptotic results of these estimators. Computer simulation demonstrates the improved performance of the method over the existing ones.

  • PDF

Dynamic analysis of a magneto-electro-elastic material with a semi-infinite mode-III crack under point impact loads

  • Feng, Wenjie;Liu, Jinxi
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.609-623
    • /
    • 2007
  • The problem of a semi-infinite magneto-electro-elastically impermeable mode-III crack in a magneto-electro-elastic material is considered under the action of impact loads. For the case when a pair of concentrated anti-plane shear impacts, electric displacement and magnetic induction impacts are exerted symmetrically on the upper and lower surfaces of the crack, the magneto-electro-elastic field ahead of the crack tip is determined in explicit form. The dynamic intensity factors and dynamic energy density factor are obtained. The method adopted is to reduce the mixed initial-boundary value problem, by using the Laplace and Fourier transforms, into three simultaneous dual integral equations, one of which is converted into an Abel's integral equation and the others into a singular integral equation with Cauchy kernel. Based on the obtained fundamental solutions of point impact loads, the solutions of two kinds of different loading cases are evaluated by integration. For some particular cases, the present results reduce to the previous results.

A Method for Optimizing Building Position of Model to Minimize Interference between Nozzles in FDM with Dual-nozzles (듀얼 노즐 FDM 프린터에서 노즐 간의 간섭을 최소화하는 모델의 빌드 방향 최적화를 위한 방법)

  • Kim, Tae-young;Lee, Yong-gu
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.37-43
    • /
    • 2017
  • 3D printing techniques can be used in various application fields and many researches have been reported. FDM (Fused Deposition modeling) can make multi-material or multi-color models with the simultaneous use of two or more filaments. In a dual-nozzle FDM printers, while the active nozzle is working, the remaining nozzle will be idle. The remaining molten resins inside an idle nozzle can ooze out unwantedly. The spill over from the resting nozzle produces unwanted remaining on the fabricated product. In this research, we suggest a method for optimizing building position of a model to minimize the unwanted spill-over that could possibly contaminate the final product. The method is based on minimizing the two intersection volumes. The first intersection volume is obtained by intersecting the volume defined by the first material and the Minkowski sum between the volume of the first material and the vector obtained by subtracting the center point of the first nozzle from the center point of the second nozzle. The second intersection volume can be obtained by reversing the role of the first and second volumes and nozzles. Some results obtained from the implementation using the Parasolid (Siemens) geometric modeling kernel is presented.

Concrete fragmentation modeling using coupled finite element - meshfree formulations

  • Wu, Youcai;Choi, Hyung-Jin;Crawford, John E.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.173-195
    • /
    • 2013
  • Meshfree methods are known to have the capability to overcome the strict regularization requirements and numerical instabilities that encumber the finite element method (FEM) in large deformation problems. They are also more naturally suited for problems involving material perforation and fragmentation. To take advantage of the high efficiency of FEM and high accuracy of meshfree methods, a coupled finite element (FE) and reproducing kernel (RK, one of the meshfree approximations) formulation is described in this paper. The coupling of FE and RK approximation is implemented in an evolutionary fashion, where the extent and location of the evolution is dependent on a triggering criteria provided by the material constitutive laws. To enhance computational efficiency, Gauss quadrature is applied to integrate both FE and RK domains so that no state variable transfer is required when mesh conversion is performed. To control the hourglassing that might occur with 1-point integrated hexahedral grids, viscous type hourglass control is implemented. Meanwhile, the FEM version of the K&C concrete (KCC) model was modified to make it applicable in both FE and RK formulations. Results using this code and the KCC model are shown for the modeling of concrete responses under quasi-static, blast and impact loadings. These analyses demonstrate that fragmentation phenomena of the sort commonly observed under blast and impact loadings of concrete structures was able to be realistically captured by the coupled formulation.

A Novel Method for Hand Posture Recognition Based on Depth Information Descriptor

  • Xu, Wenkai;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.763-774
    • /
    • 2015
  • Hand posture recognition has been a wide region of applications in Human Computer Interaction and Computer Vision for many years. The problem arises mainly due to the high dexterity of hand and self-occlusions created in the limited view of the camera or illumination variations. To remedy these problems, a hand posture recognition method using 3-D point cloud is proposed to explicitly utilize 3-D information from depth maps in this paper. Firstly, hand region is segmented by a set of depth threshold. Next, hand image normalization will be performed to ensure that the extracted feature descriptors are scale and rotation invariant. By robustly coding and pooling 3-D facets, the proposed descriptor can effectively represent the various hand postures. After that, SVM with Gaussian kernel function is used to address the issue of posture recognition. Experimental results based on posture dataset captured by Kinect sensor (from 1 to 10) demonstrate the effectiveness of the proposed approach and the average recognition rate of our method is over 96%.

Multiscale Implicit Functions for Unified Data Representation

  • Yun, Seong-Min;Park, Sang-Hun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.12
    • /
    • pp.2374-2391
    • /
    • 2011
  • A variety of reconstruction methods has been developed to convert a set of scattered points generated from real models into explicit forms, such as polygonal meshes, parametric or implicit surfaces. In this paper, we present a method to construct multi-scale implicit surfaces from scattered points using multiscale kernels based on kernel and multi-resolution analysis theories. Our approach differs from other methods in that multi-scale reconstruction can be done without additional manipulation on input data, calculated functions support level of detail representation, and it can be naturally expanded for n-dimensional data. The method also works well with point-sets that are noisy or not uniformly distributed. We show features and performances of the proposed method via experimental results for various data sets.

Identification of saturation-type nonlinear feedback control systems

  • Yeping, Sun;Kasiwagi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.161-164
    • /
    • 1996
  • The authors have recently proposed a new method for identifying Volterra kernels of nonlinear control systems by use of M-sequence and correlation technique. A specially chosen M-sequence is added to the nonlinear system to be identified, and the crosscorrelation function between the input and output is calculated. Then every crosssection of Volterra kernels up to 3rd order appears at a specified delay time point in the crosscorrelation. This method is applied to a saturation-type nonlinear feedback control system of mechanical-electrical servo system having torque saturation nonlinearity. Simulation experiments show that we can obtain Volterra kernels of saturation-type nonlinear system, and a good agreement is observed between the observed output and the calculated one from the measured Volterra kernels.

  • PDF

Recognizing Static Target in Video Frames Taken from Moving Platform

  • Wang, Xin;Sugisaka, Masanori;Xu, Wenli
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.673-676
    • /
    • 2003
  • This paper deals with the problem of moving object detection and location in computer vision. We describe a new object-dependent motion analysis method for tracking target in an image sequence taken from a moving platform. We tackle these tasks with three steps. First, we make an active contour model of a target in order to build some of low-energy points, which are called kernels. Then we detect interest points in two windows called tracking windows around a kernel respectively. At the third step, we decide the correspondence of those detected interest points between tracking windows by the probabilistic relaxation method In this algorithm, the detecting process is iterative and begins with the detection of all potential correspondence pair in consecutive image. Each pair of corresponding points is then iteratively recomputed to get a globally optimum set of pairwise correspondences.

  • PDF

Testing the Existence of a Discontinuity Point in the Variance Function

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.707-716
    • /
    • 2006
  • When the regression function is discontinuous at a point, the variance function is usually discontinuous at the point. In this case, we had better propose a test for the existence of a discontinuity point with the regression function rather than the variance function. In this paper we consider that the variance function only has a discontinuity point. We propose a nonparametric test for the existence of a discontinuity point with the second moment function since the variance function and the second moment function have the same location and jump size of the discontinuity point. The proposed method is based on the asymptotic distribution of the estimated jump size.

  • PDF