• Title/Summary/Keyword: Point-based Rendering

Search Result 75, Processing Time 0.033 seconds

Surface Rendering using Stereo Images

  • Lee, Sung-Jae;Lee, Jun-Young;Lee, Myoung-Ho;Kim, Jeong-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.181.5-181
    • /
    • 2001
  • This paper presents the method of 3D reconstruction of the depth information from the endoscopic stereo scopic images. After camera modeling to find camera parameters, we performed feature-point based stereo matching to find depth information. Acquired some depth information is finally 3D reconstructed using the NURBS(Non Uniform Rational B-Spline) algorithm. The final result image is helpful for the understanding of depth information visually.

  • PDF

A Preprocessing Algorithm for Layered Depth Image Coding (계층적 깊이영상 정보의 압축 부호화를 위한 전처리 방법)

  • 윤승욱;김성열;호요성
    • Journal of Broadcast Engineering
    • /
    • v.9 no.3
    • /
    • pp.207-213
    • /
    • 2004
  • The layered depth image (LDI) is an efficient approach to represent three-dimensional objects with complex geometry for image-based rendering (IBR). LDI contains several attribute values together with multiple layers at each pixel location. In this paper, we propose an efficient preprocessing algorithm to compress depth information of LDI. Considering each depth value as a point in the two-dimensional space, we compute the minimum distance between a straight line passing through the previous two values and the current depth value. Finally, the minimum distance replaces the current attribute value. The proposed algorithm reduces the variance of the depth information , therefore, It Improves the transform and coding efficiency.

An Auto-range Fast Bilateral Filter Using Adaptive Standard Deviation for HDR Image Rendering (HDR 영상 렌더링을 위한 적응적 표준 편차를 이용한 자동 레인지 고속 양방향 필터)

  • Bae, Tae-Wuk;Lee, Sung-Hak;Kim, Byoung-Ik;Sohng, Kyu-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.350-357
    • /
    • 2010
  • In this paper, we present an auto-range fast bilateral filter (FBF) for high-dynamic-range (HDR) images, which increases computation speed by using adaptive standard deviations for range filter (RF) of FBF in iCAM06. Many images that cover the entire dynamic range of the scene with different exposure times are fused into one High Dynamic Range (HDR) image. The representative algorithm for HDR image rendering is iCAM06, which is based on the iCAM framework, such as the local white point adaptation, chromatic adaptation, and the image processing transform (IPT) uniform color space. FBF in iCAM06 uses constant standard deviation in RF. So, it causes unnecessary FBF computation in high stimulus range with broad and low distribution. To solve this problem, the low stimulus image and high stimulus image of CIE tri-stimulus values (XYZ) divided by the threshold are respectively processed by adaptive standard deviation based on its histogram distribution. Experiment results show that the proposed method reduces computation time than the previous FBF.

Optical Multi-Normal Vector Based Iridescence BRDF Compression Method (광학적 다중 법선 벡터 기반 훈색(暈色)현상 BRDF 압축 기법)

  • Ryu, Sae-Woon;Lee, Sang-Hwa;Park, Jong-Il
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.3
    • /
    • pp.184-193
    • /
    • 2010
  • This paper proposes a biological iridescence BRDF(Bidirectional Reflectance Distribution Function) compression and rendering method. In the graphics technology, iridescence sometimes is named structure colors. The main features of these symptoms are shown transform of color and brightness by varying viewpoint. Graphics technology to render this is the BRDF technology. The BRDF methods enable realistic representation of varying view direction, but it requires a lot of computing power because of large data. In this paper, we obtain reflection map from iridescence BRDF, analyze color of reflection map and propose representation method by several colorfully concentric circle. The one concentric circle represents beam width of reflection ray by one normal vector. In this paper, we synthesize rough concentric by using several virtually optical normal vectors. And we obtain spectrum information from concentric circles passing through the center point. The proposed method enables IBR(image based rendering) technique which results is realistic illuminance and spectrum distribution by one texture from reduced BRDF data within spectrum.

A NEW APPROACH FOR RANKING FUZZY NUMBERS BASED ON $\alpha$-CUTS

  • Basirzadeh, Hadi;Abbasi, Roohollah
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.767-778
    • /
    • 2008
  • Comparison between two or more fuzzy numbers, along with their ranking, is an important subject discussed in scholarly articles. We endeavor in this paper to present a simple yet effective parametric method for comparing fuzzy numbers. This method offer significant advantages over similar methods, in comparing intersected fuzzy numbers, rendering the comparison between fuzzy numbers possible in different decision levels. In the process, each fuzzy number will be given a parametric value in terms of $\alpha$, which is dependent on the related $\alpha$-cuts. We have compared this method to Cheng's centroid point method [5] (The relation of calculating centroid point of a fuzzy number was corrected later on by Wang [12]). The proposed method can be utilized for all types of fuzzy numbers whether normal, abnormal or negative.

  • PDF

Stylized Specular Reflections Using Projective Textures based on Principal Curvature Analysis (주곡률 해석 기반의 투영 텍스처를 이용한 스타일 반사 효과)

  • Lee, Hwan-Jik;Choi, Jung-Ju
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • Specular reflections provide the visual feedback that describes the material type of an object, its local shape, and lighting environment. In photorealistic rendering, there have been a number of research available to render specular reflections effectively based on a local reflection model. In traditional cel animations and cartoons, specular reflections plays important role in representing artistic intentions for an object and its related environment reflections, so the shapes of highlights are quite stylistic. In this paper, we present a method to render and control stylized specular reflections using projective textures based on principal curvature analysis. Specifying a texture as a pattern of a highlight and projecting the texture on the specular region of a given 3D model, we can obtain a stylized representation of specular reflections. For a given polygonal model, a view point, and a light source, we first find the maximum specular intensity point, and then locate the texture projector along the line parallel to the normal vector and passing through the point. The orientation of the projector is determined by the principal directions at the point. Finally, the size of the projection frustum is determined by the principal curvatures corresponding to the principal directions. The proposed method can control the position, orientation, and size of the specular reflection efficiently by translating the projector along the principal directions, rotating the projector about the normal vector, and scaling the principal curvatures, respectively. The method is be applicable to real-time applications such as cartoon style 3D games. We implement the method by Microsoft DirectX 9.0c SDK and programmable vertex/pixel shaders on Nvidia GeForce FX 7800 graphics subsystems. According to our experimental results, we can render and control the stylized specular reflections for a 3D model of several ten thousands of triangles in real-time.

  • PDF

3D Motion of Objects in an Image Using Vanishing Points (소실점을 이용한 2차원 영상의 물체 변환)

  • 김대원;이동훈;정순기
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.11
    • /
    • pp.621-628
    • /
    • 2003
  • This paper addresses a method of enabling objects in an image to have apparent 3D motion. Many researchers have solved this issue by reconstructing 3D model from several images using image-based modeling techniques, or building a cube-modeled scene from camera calibration using vanishing points. This paper, however, presents the possibility of image-based motion without exact 3D information of scene geometry and camera calibration. The proposed system considers the image plane as a projective plane with respect to a view point and models a 2D frame of a projected 3D object using only lines and points. And a modeled frame refers to its vanishing points as local coordinates when it is transformed.

Large Point Cloud-based Pipe Shape Reverse Engineering Automation Method (대용량 포인트 클라우드 기반 파이프 형상 역설계 자동화 방법 연구)

  • Kang, Tae-Wook;Kim, Ji-Eum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.692-698
    • /
    • 2016
  • Recently, the facility extension construction and maintenance market portion has increased instead of decreased the newly facility construction. In this context, it is important to examine the reverse engineering of MEP (Mechanical Electrical and Plumbing) facilities, which have the high operation and management cost in the architecture domains. The purpose of this study was to suggest the Large Point Cloud-based Pipe Shape Reverse Engineering Method. To conduct the study, the related researches were surveyed and the reverse engineering automation method of the pipe shapes considering large point cloud was proposed. Based on the method, the prototype was developed and the results were validated. The proposed method is suitable for large data processing considering the validation results because the rendering performance standard deviation related to the 3D point cloud massive data searching was 0.004 seconds.

The Development of Authoring Tool for 3D Virtual Space Based on a Virtual Space Map (가상공간지도 기반의 3차원 가상공간 저작도구의 개발)

  • Jung Il-Hong;Kim Eun-Ji
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.177-186
    • /
    • 2006
  • This paper presents the development of a certain highly efficient authoring tool for constructing realistic 3D virtual space using image-based rendering techniques based on a virtual space map. Unlike conventional techniques such as TIP, for constructing a small 3D virtual space using single image, the authoring tool developed herein produces a wide 3D virtual space using multiple images. This tool is designed for constructing each small 3D virtual space for each input image, and for interconnecting these 3D virtual spaces into a wide 3D virtual space using a virtual space map. The map consists of three elements such as specific room, link point and passageway, and three directions. It contains various information such as the connection structure, the navigation information and so on. Also, the tool contains a user interface that let users construct the wide 3D virtual space easily.

  • PDF

A Study on 3D File Format for Web-based Scientific Visualization

  • Lee, Geon-hee;Nam, Jeong-hwan;Han, Hwa-seop;Kwon, Soon-chul
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.243-247
    • /
    • 2019
  • The most commonly used 3D modeling file formats are OBJ (Wavefront file format specification) and STL (STereoLithography). Although they have a common point of view in 3D on the screen, detailed functions are different according to purpose of development. OBJ is the most commonly used 3D file format and STL is mainly used as 3D file format for 3D printing. However, in the field of Scientific Visualization, precise analysis is required. There is a difference in accuracy depending on the type of 3D file format. OBJ and STL are not suitable for delicate surface description because they form meshes in the form of triangular polygons. And if you increase the number of triangle polygons, it will be smoother, but the file size also increases exponentially and causes excessive CPU usage. In contrast, VTK provides a variety of polygon structures, including triangular polygons as well as rectangular polygons and cube polygons. Thus, delicate surface depiction is possible. Delicate surface rendering is possible and file size is not large. This paper describes the concept and structure of VTK. We also compared the load times and file sizes between VTK, STL, and OBJ in the Chrome browser. In addition, the difference in surface rendering ability between VTK, STL, and OBJ is intuitively viewed based on the screen in which each 3D file format is implemented under the same conditions. This study is expected to be helpful for efficient 3D file format for precise implementation of Web - based Scientific Visualization.