• Title/Summary/Keyword: Pneumatic Modeling

Search Result 62, Processing Time 0.03 seconds

Development of the Optimal Design Technique for the Pneumatic Vibration Isolation System by Nonlinear Modeling and Analysis (공압방진시스템의 비선형 모델링과 해석을 통한 최적설계기술 개발)

  • 문준희;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.151-154
    • /
    • 2001
  • The pneumatic vibration isolation systems have been widely used in industry and laboratories, but the full mathematical analysis and nonlinear modeling techniques have not been reported yet, even while the nonlinear features of the pneumatic vibration isolation system decide the main characteristics. For instance, the orifice in a pneumatic vibration isolator has been traditionally considered as a simple viscous damper, which was too much simplified to explain the performance of the isolation system. In this paper, the nonlinear characteristics are considered for the orifice and chamber, etc. The numerical simulation is carried out by the MATLAB/Simulink software. From the analysis result, a clear trend of the nonlinear features is shown: the vibration transmissibility changes not only due to the excitation frequency but also due to the amplitude of the vibration excitation. Therefore various design parameters are optimally chosen for the vibration isolation system. The proposed methods show good compatibility between the analysis results and the experiments.

  • PDF

The Precision Position Control of the Pneumatic Rodless Cylinder Using Recurrent Neural Networks (리커런트 신경회로망을 이용한 공압 로드레스 실린더의 정밀위치제어)

  • 노철하;김영식;김상희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.84-90
    • /
    • 2003
  • This paper develops a control method that is composed of the proportional control algorithm and the learning algorithm based on the recurrent neural networks (RNN) for the position control of a pneumatic rodless cylinder. The proportional control algorithm is suggested for the modeled pneumatic system, which is obtained easily simplifying the system, and the RNN is suggested for the compensation of the modeling errors and uncertainties of the pneumatic system. In the proportional control, two zones are suggested in the phase plane. One is the transient zone for the smooth tracking and the other is the small movement zone for the accurate position control with eliminating the stick-slip phenomenon. The RNN is connected in parallel with the proportional control for the compensation of modeling errors and frictions, compressibilities, and parameter uncertainties in the pneumatic control system. This paper experimentally verifies the feasibility of the proposed control algorithm for such pneumatic systems.

Development of the Pneumatic Servo Valve

  • Kim, Dong-Soo;Choi, Byung-Oh;Kim, Kwang-Young;Lee, Won-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1146-1151
    • /
    • 2003
  • Pneumatic servo valve is an electro-mechanical device which change electric signals to a proper pneumatic signals, that is, flowrate and pressure. In this study, a pneumatic servo valve was designed and each simulation was conducted on any variation in the flowrate depending upon the magnetic force of the linear force motor and the displacement of the spool. And permanent magnet was used as a material for the plunger of the servo valve. Thereby, a low electrical power consumption type coil was desinged. And a modeling for the coil design was conducted by using the magnetic circuit. also, the feasibility of the modeling was verified by using a commercial magnetic field analysis program. The designed and fabrication of the spool and sleeve, position sensor, servo controller and the dynamic characteristic verified by the experiment.

  • PDF

A Study on Modeling of Pneumatic System for an IDC Device (IDC장치에 대한 공압시스템의 모델링에 관한 연구)

  • Nguyen, C.T.;Le, Q.H.;Jeong, Y.M.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.11-17
    • /
    • 2015
  • An intelligent deburring control (IDC) device is used to control the constant force for a deburring tool mounted on the end-effector of a robotic arm. This device maintains a constant contact force between the deburring tool and the workpiece in order to provide a good deburring performance. In this paper, we build a mathematical model in Matlab/Simulink to estimate the force control mechanism of the pneumatic system for the IDC device. The Simulink blocks are built for each separate part and are linked into an integrated simulation system. Such a model also relies on the effects of the flow rate through the valve, air compressibility in the cylinder, and time delay in the pressure valve. The results of the simulation are compared to a simple experiment in which convenient math modeling is performed. These results are then used to optimize the mechanical design and to develop a force control algorithm for the pneumatic cylinder.

Robust Control of the Position of a Manipulator Using Pneumatic Artificial Muscle (공압인공근육을 이용한 조작기 위치의 강인제어)

  • Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1882-1892
    • /
    • 1996
  • This paper is concerned with the position control of the ond degree-of freedom manipulator using pneumatic artificial muscle actuator which is built to have a proper compliance. For t his pneumatic artificial muscle actuator though, it is difficult to make an effective control scheme due to the nonlinearity and uncertainties on the dynamics of the actuator. In this paper, a third-order equation of motion is derived for the actuator including the dynamics of the pneumatic servovalve. Later, various modeling uncertainties due to the nonlinearity and unmodeled dynamics of the servo vlave and the actuator are taken care of, as a trade-off between the closed-loop performance of the controlled system and its robustness to uncertainties. A controller using .mu. synthesis thchnique is designed, and robust performance against measurement noise, various modeling uncertainties due to the dynamics of the servo valve and actuator is achieved. The effectiveness of the proposed control methods is illustrated through simulations and experiments.

An Experimental Study on the Frication Forces in Low Friction and High Speed Pneumatic Cylinders (저마찰.고속 공압실린더의 마찰특성 연구)

  • 김동수;김광영;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.476-479
    • /
    • 1997
  • A Knowledge of friction force in pneumatic cylinders makes it possible to improve cylinder description during simulation and to asses performance under changing operating conditions more accurately. Such knowledge is particularly useful, for example, when modeling continuous pneumatic positioning systems or predicting the operating conditions under which stick slip may occur, as well as in establishing preventive maintenance procedures for pneumatic cylinders. Friction force depends on a number of factors, including operating pressure, seal running speed on the cylinder barrel and rod, barrel material and surface roughness, seal dimensions and profile, seal material, lubrication conditions, cylinder distortion during assembly, and the operating temperature of cylinder components. This paper shows a system for measuring the friction force caused by a seal used in pneumatic cylinders. Results of experimental tests show that seal friction forces for grease lubricated service are clearly dependent on speed and pressure and are les sensitivity to other parameter. i.e., barrel material and roughness, seal material, and profile.

  • PDF

An Efficient Transmissibility-design Technique for Pneumatic Vibration Isolator (지반진동절연을 위한 공압제진대의 전달률 설계기법)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.411-423
    • /
    • 2008
  • Pneumatic vibration isolator has a wide application for ground-vibration isolation of vibration-sensitive equipments. Recent advances In precision machine tools and instruments such as nano-technology or medical devices require a better isolation performance, which can be efficiently done by precise modeling- and design- of the isolation system. This paper will discuss an efficient transmissibility design method for pneumatic vibration isolator by employing the complex stiffness model of dual-chamber pneumatic spring developed in our previous research. Three design parameters of volume ratio between the two pneumatic chambers, the geometry of capillary tube connecting the two pneumatic chambers and finally the stiffness of diaphragm necessarily employed for prevention of air leakage were found to be important factors in transmissibility design. Based on design technique that maximizes damping of dual-chamber pneumatic spring, trade-off among the resonance frequency of transmissibility, peak transmissibility and transmissibility in high frequency range was found, which was not ever stated in previous researches. Furthermore this paper will discuss about negative role of diaphragm in transmissibility design. Then the design method proposed in this paper will be illustrated through experiment at measurements.

인조신경망을 이용한 좌심실보조장치의 동적 모델링

  • 김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.346-350
    • /
    • 1996
  • This paper presents a Neural Network Identification (NNI) method for modeling of highly complicated nonlinear and time varing human system with a pneumatically driven mock circulation system of Left Ventricular Assist Device(LVD). This system consists of electronic circuits and pneumatic driving circuits. The initation of systole and the pumping duration can be determined by the computer program. The line pressure from a pressure transducer inserted in the pneumatic line was recorded. System modeling is completed using the adaptively trained backpropagation learning algorithms with input variables, Heart Rate(HR), Systole-Diastole Rate(SDR), which can vary state of system, and preload, afterload, which indicate the systemic dynamic characteristics and output parameters are preload, afterload.

  • PDF

Amplitude-dependent Complex Stiffness Modeling of Dual-chamber Pneumatic Spring for Pneumatic Vibration Isolation Table (공압제진대용 이중챔버형 공압스프링의 복소강성 모형화)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.110-122
    • /
    • 2008
  • Pneumatic vibration isolator typically consisting of dual-chamber pneumatic springs and a rigid table are widely employed for proper operation of precision instruments such as optical devices or nano-scale equipments owing to their low stiffness- and high damping-characteristics. As environmental vibration regulations for precision instruments become more stringent, it is required to improve further the isolation performance. In order to facilitate their design optimization or active control, a more accurate mathematical model or complex stiffness is needed. Experimental results we obtained rigorously for a dual-chamber pneumatic spring exhibit significantly amplitude dependent behavior, which cannot be described by linear models in earlier researches. In this paper, an improvement for the complex stiffness model is presented by taking two major considerations. One is to consider the amplitude dependent complex stiffness of diaphragm necessarily employed for prevention of air leakage. The other is to employ a nonlinear model for the air flow in capillary tube connecting the two pneumatic chambers. The proposed amplitude-dependent complex stiffness model which reflects dependency on both frequency and excitation amplitude is shown to be very valid by comparison with the experimental measurements. Such an accurate nonlinear model for the dual-chamber pneumatic springs would contribute to more effective design or control of vibration isolation systems.

Analysis for Movement Characteristics of Pneumatic Impulsive Actuator for Robotic Colonoscope (내시경용 로봇을 위한 공압구동기의 운동특성 해석)

  • Lee, Jin-Hui;Jeong, Yeon-Gu;Gang, Byeong-Gyu;Park, Jong-O
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1638-1644
    • /
    • 2002
  • A novel locomotion using the pneumatic impulsive actuator was proposed for robotic colonoscope. This locomotion showed good moving performance in the environment of rigid pipe, however, the displacement per one impact(step displacement) is greatly reduced due to the low stiffness and high damping characteristics of the colon. Therefore, the modeling technique based on spring and damping system is studied to predict the step displacement and some parametric studies are carried out to investigate main parameters that influence the step displacement of locomotion. Based on simulation result, a new locomotion to control the resistance force is suggested and fabricated. Through the experiment on the colon, the usefulness of modeling technique is confirmed and successful improvement of moving characteristics is achieved.