• Title/Summary/Keyword: Platinum(Pt)

Search Result 486, Processing Time 0.025 seconds

Characteristics of SO2 Oxidation of Pt/TiO2 Catalyst according to the Properties of Platinum Precursor (Platinum Precursor 특성에 따른 Pt/TiO2 촉매의 SO2 산화 반응특성 연구)

  • Kim, Jae Kwan;Park, Seok Un;Nam, Ki Bok;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.368-376
    • /
    • 2020
  • In this study, an analysis on the reaction characteristics of a catalyst using platinum (Pt) as an active oxidation metal catalyst for controlling SO2 was performed. Pt/TiO2 catalyst was prepared by using Pt as various precursor forms on a titania (TiO2) support, and used for the experiment. There was no difference in performance of SO2 oxidation according to Pt valence states such as Pt2+ or Pt4+ on Pt/TiO2, and Pt chloride species such as PtClx reduces SO2 oxidation performance. In addition, as a result of analyzing the valence state of the catalyst before and after the SO2 oxidation reaction by XPS analysis, a decrease in lattice oxygen and an increase in surface chemisorbed oxygen after the SO2 oxidation reaction were confirmed. Therefore it can be suggested that the oxidation reaction of SO2 when using the Pt/TiO2 catalyst is the major one following the Mar-Van Krevelen mechanism where the reaction of lattice oxygen corresponding to PtOx and the oxidation-reduction reaction by oxygen vacancy occur. Overall, it can be confirmed that the oxygen species of PtOx (Pt2+ or Pt4+) present on the catalyst acts as a major active site.

Preparation of Platinum catalysts for PEM Fuel cells

  • Sasikumar G.;Ryu H.
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.189-192
    • /
    • 2003
  • In this work, we have prepared platinum catalyst by various methods, investigated fuel cell performance and compared performance with commercially available $20\%$ Pt supported on carbon (Pt/C) catalyst. We have found that Pt/C prepared by reduction of chloroplatinic acid in mixed solvent (water+ethylene glycol) gives better performance compared to that produced by reduction of aqueous chloroplatinic acid, which can be attributed to smaller catalyst particle size and lower agglomeration in the mixed solvent. We have also prepared a novel platinum electrocatalyst by depositing platinum on Nafion coated carbon powder and it shows great promise. The performance of electrode prepared using $20\%Pt$ onn Nafion coated carbon mixed with Pt/C was found to be higher than the performance of electrodes using commercially available $20\%$ Pt/C, up to a current density of about $1100mA/cm^2$. The cell voltages obtained were respectively 621 and 603mV, at a current density of: $1000mA/cm^2$, in a single cell using $0.25mgPt/cm^2$ and Nafion 10035 membrane at $80^{\circ}C$ using hydrogen/oxygen reactants at 1 atm pressure.

  • PDF

Spectrophotometric Determination of Platinum (IV) with 2-Oximino-1-indanone (2-Oximino-1-indanone을 이용한 Pt(IV) ion의 정량에 관한 연구)

  • 김정균;유미경;원미숙;심윤보;고영심
    • YAKHAK HOEJI
    • /
    • v.28 no.2
    • /
    • pp.61-67
    • /
    • 1984
  • A method is described for the spectrophotometric determination of platinum (IV) with 2-oximino-1-indanone based on solvent extraction of Pt:2-oximino-1-indanone complex. The 2-oximino-1-indanone reacted with Pt(IV) to form a dark-orange complex which shows a characterisic maximum absorption at 342nm. The optimum PH for the platinum extraction lies between 5.4~8.0. Beer's law obeys up to 0.98-16.3ppm of platinum (IV) and the molar absorption coefficient is $1.06{\times}10^{-4}L.mol^{-1}.cm^{-1}$. The relative standard deviation of the method was $\times2.1%$. The composition of the complex is estimated to be Pt : In= 1 : 1, by the mole ratio method and ion exchange resin experiment. The optimum condition for the determination of platinum has been studied in detail. The 2-oximin-1-indanone is found to be a selectivereagent for the determination of platinum, since the synthesixed 2-oximino-1-indanone did not react with other metals such as cobalt, cadmium, copper, manganese nickel, iron, lead and zinc, to form the complex. In this studies, we have also clarified Sindhwani and Singh's spectrophotometric determination data of various metals with acenaphthenequinone monooxime (Talanta 20,248, 1973), whose results were not correct.

  • PDF

Synthesis and Oxygen Reduction Reaction Evaluation of 20% Pt/C for Polymer Electrolyte Fuel Cell (고분자전해질 연료전지용 20% Pt/C 캐소드 촉매 제조 및 산소환원반응 평가)

  • Kim, Jinhwan;Kang, Suk-Min;Thube, Dilip. R.;Ryu, Hojin
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.454-459
    • /
    • 2009
  • In order to commercialize Polymer Electrolyte Fuel Cell (PEFC), the cathode catalyst such as Platinum supported Carbon (Pt/C) need to have a high activity of Oxygen Reduction Reaction (ORR). In this study, the 20% Pt/C was synthesized using the chemical reduction method while the crystallinity of Platinum (Pt) particles were controlled under heat treatment conditions. The activity of synthesized Pt catalysts was evaluated using electrochemical measurement. Compared with the $i_{ORR}$ at 0.8 V of 20% Pt/C heat-treated at $500^{\circ}C$ and the 20% Pt/C that were not heated and commercial 20% Pt/C, the $i_{ORR}$ at 0.8 V of 20% Pt/C heattreated at $500^{\circ}C$ was 9.5 and 1.7 times higher than those of the 20% Pt/C and commercial 20% Pt/C that were not heated. It was considered that the crystallinity and particle size affect the ORR activity of the Pt/C catalysts.

Monochlorination of Methane over Pt/NaY-zeolite Catalysts with High Platinum Dispersion (고분산도의 백금이 담지된 Pt/NaY 제올라이트 촉매상에서 메탄의 단일염소화 반응)

  • Lee, Dong-Keun
    • Applied Chemistry for Engineering
    • /
    • v.2 no.3
    • /
    • pp.238-245
    • /
    • 1991
  • Chlorination of methane was carried out over the Pt/NaY zeolite catalysts having different dispersion and location. On the finely dispersed platinum particles inside the zeolite methylchloride was the sole product, while on the large platinum ones outside surface of the zeolite all four chloromethanes were produced. Besides the role of highly dispersed platinum particles, the confined volume of the supercages in the support seems to have played another role on the exclusive production of methylchloride by restricting the further chlorination.

  • PDF

Stereospecific Coordination of 2,2$^\prime$-Diaminobiphenyl in the Square Planar Platinum(Ⅱ) Comdlexes

  • Jun, Moo-Jin;Choi, Sung-Rack
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.6
    • /
    • pp.237-240
    • /
    • 1984
  • 2,2'-Diaminobiphenyl platinum (II) complexes of optically active trans-1,2-diaminocyclohexane and 1,2-diaminopropane, [Pt(S,S-chxn)(dabp)]Cl2, [Pt(R,R-chxn)(dabp)]$C_{12}$, [Pt(S-pn)(dabp)]$C_{l2}$, and [Pt(R-pn)(dabp)]Cl2, where S,S-chxn and R,R-chxn are, respectively, S and R isomers of trans-1,2-diaminocyclohexane, and S-pn and R-pn are, respectively, S and R isomers of 1,2-diaminopropane, and dabp the 2,2'-diaminobipheny, have been prepared. The dabp ligand has been found to take the $=delta$ conformation in the S,S-chxn and S-pn platinum (II) complexes, while it takes the $\lambda$ conformation in the R,R-chxn and R-pn platinum (II) complexes.

A Study of Carbon Monoxide Oxidation on Pt & Pt-Pd Catalysts (귀금속촉매 (Pt, Pd)를 이용한 일산화탄소 산화반응에 관한 연구)

  • 金京林
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.43-51
    • /
    • 1985
  • This study is concerned with the oxidation of carbon monoxide on platinum and platinum-palladium catalysts. Catalysts were made by the impregnation method and flow reactor was used in the catalytic reaction. As for the mixed gases, carbon monoxide concentration varied from 1 to 4% and that of oxygen from 1 to 4%. $N_2$ was used as carrier gas and GHSV varied from 24, 000 $h^{-1} to 60, h^{-1}$. The temperature range was from 200 to $600^\circ$C. It was also taken into consideration that the heat and mass transfer resistance of our catalysts was negligible in the study. Experimental results showed that platinum-palladium catalyst was about 1.5-3.9% superior to platinum catalyst in conversion yield. When we used platinum-palladium catalyst, we observed that carbon monoxide oxidation was found to be 1 st order with respect to carbon monoxide concentration. Activation energy of the catalyst was 23.5 kcal/mol.

  • PDF

General Pharmacology of the New Platinum (II) Anticancer Agents with Diaminocyclohexane as a Carrier Ligand (Diaminocyclohexane을 배위자로 한 새로운 항암성 백금(II)착체류의 일반약리작용)

  • 고석태;강선영;임동윤;신현준;최승기;노영수;정지창
    • Biomolecules & Therapeutics
    • /
    • v.6 no.3
    • /
    • pp.303-311
    • /
    • 1998
  • The general pharmacological properties of new platinum (II) coordination complexes, SA : [Pt(trans-ι-DACH)(DPPE)] . 2NO$_3$, SB : [Pt(cia-DACH)(DPPP)] 2NO$_3$ and SC : [Pt(cia-DACH)(DPPE)] 2NO$_3$on central nervous, respiratory, cardiovascular and digestive systems were studied in various experimental animals. These platinum (II) anticancer agents had no effects on analgesia, thiopental-induced sleeping time, body temperature, strychnine-induced convulsion, inflammation and local anesthetic action in mice and rats. Intestinal motility, stomach-ulcer induced by serotonin and bile-secretion of rats were not influenced by the dose of 30 mg/kg. However SB and SC induced a mild decrease in heart rate in anesthetized rats. Based on these results, these new platinum (II) complexes may be regarded as a valuable lead compound in the development of new anticancer chemotherapeutic agents with marked antitumor activity and low toxicity.

  • PDF

Synthesis and Properties of Noel Platinum(IV) Complexes Involving Asymmetric Chiral Diamines as Carrier Ligands

  • 이은주;전무진;손윤수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1295-1298
    • /
    • 1999
  • Novel platinum(IV) complexes with asymmetric chiral diamine ligands cis,cis,trans-A2PtCl2(X)2 (X = OH, OCOCH3, OCOC2H5, A2 =NH2CH(CH3)CH2NH(c-C6H11)(apcha), NH2CH(CH3)CH2NH(c-C5H9)(apcpa)) have been prepared. One of the platinum(IV) complexes, (apcpa)PtCl2(OCOC2H5)2(6), was subjected to X-ray crystallographic analysis. The crystal structure of (apcpa)PtCl2(OCOC2H5)2 (monoclinic, P21 (No. 4), a = 9.1391(1), b = 22.2517(1), c = 10.0687(1)Å, β= 109.105(1)。 , V = 1934.80(3)Å3 , Z = 4, R1 = 0.0532) exhibits that the platinum atom achieves a typical octahedral arrangement with two nitrogen atoms in cis positions and two carboxylato group in trans positions. The spectroscopic data disclose that these platinum(IV) complexes are stable and their molecular structures are retained in aqueous solution. The title complexes are highly cytotoxic in vitro but do not exhibit oral anticancer activity in vivo.

Synthesis of Electrode Catalyst for Polymer Electrolyte Membrane Fuel Cells Using Colloidal Method (콜로이드법을 이용한 고분자전해질 연료전지용 백금전극 촉매의 제조)

  • Park, Jin-Nam
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.59-64
    • /
    • 2013
  • Pt/carbon Electrode catalysts for PEMFC were synthesized using colloidal method. PSA (platinum sulfite acid) was used as a Pt precursor and CPA (chloroplatinic acid) was also used to replace relatively expensive PSA. Electrode catalysts prepared using PSA showed Pt particle size less than 3.5 nm and Pt yield higher than 90% in 10~40 wt% Pt loading. Electrode catalysts prepared using CPA also showed Pt particle size less than 4.4 nm and Pt yield higher than 80% in 10~40 wt% Pt loading. The MEA (membrane electrode assembly) using 20 wt% Pt/VXC72 showed equivalent I-V curve comparing with commercial electrode catalyst in single cell test.