Browse > Article
http://dx.doi.org/10.14478/ace.2020.1035

Characteristics of SO2 Oxidation of Pt/TiO2 Catalyst according to the Properties of Platinum Precursor  

Kim, Jae Kwan (Korea Electric Power Research Institute)
Park, Seok Un (Korea Electric Power Research Institute)
Nam, Ki Bok (Materials Architecturing Research Center, Korea Institute of Science and Technology)
Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Kyonggi University)
Publication Information
Applied Chemistry for Engineering / v.31, no.4, 2020 , pp. 368-376 More about this Journal
Abstract
In this study, an analysis on the reaction characteristics of a catalyst using platinum (Pt) as an active oxidation metal catalyst for controlling SO2 was performed. Pt/TiO2 catalyst was prepared by using Pt as various precursor forms on a titania (TiO2) support, and used for the experiment. There was no difference in performance of SO2 oxidation according to Pt valence states such as Pt2+ or Pt4+ on Pt/TiO2, and Pt chloride species such as PtClx reduces SO2 oxidation performance. In addition, as a result of analyzing the valence state of the catalyst before and after the SO2 oxidation reaction by XPS analysis, a decrease in lattice oxygen and an increase in surface chemisorbed oxygen after the SO2 oxidation reaction were confirmed. Therefore it can be suggested that the oxidation reaction of SO2 when using the Pt/TiO2 catalyst is the major one following the Mar-Van Krevelen mechanism where the reaction of lattice oxygen corresponding to PtOx and the oxidation-reduction reaction by oxygen vacancy occur. Overall, it can be confirmed that the oxygen species of PtOx (Pt2+ or Pt4+) present on the catalyst acts as a major active site.
Keywords
SO2; Oxidation platinum catalyst; Valence state;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Armor, Environmental catalysis, Appl. Catal. B: Environ., 1(4), 221-256 (1992).   DOI
2 N. Ohlms, DeSOxNOx process for flue gas cleaning, Catal. Today, 16(2), 247-261 (1993).   DOI
3 I. Giakoumelou, V. Parvulescu, and S. Boghosian, Oxidation of sulfur dioxide over supported solid $V_2O_5$/$SiO_2$ and supported molten salt $V_2O_5$-$Cs_2SO_4$/$SiO_2$ catalysts: Molecular structure and reactivity, J. Catal., 225, 337-349 (2004).   DOI
4 G. K. Boreskov, Catalysis in Sulphuric Acid Production, 348, Goskhimizdat (in Russian), Moskow (1954).
5 J. H. Frazer and W. J. Kirkpatrick, A new mechanism for the action of the vanadium pentoxide-silica-alkali pyrosulfate catalyst for the oxidation of sulfur dioxide, J. Am. Chem. Soc., 62(7), 1659-1660 (1940).   DOI
6 K. M. Eriksen, C. K. Jensen, S. B. Rasmussen, C. Oehlers, B. S. Bal'zhinimaev, and R. Fehrmann, EPR spectroscopic characterization of $DeNO_x$ and $SO_2$ oxidation catalysts and model systems, Catal. Today, 54(4), 465-472 (1999).   DOI
7 I. Giakoumelou, R. M. Caraba, V. I. Parvulescu, and S. Boghosian First in situ raman study of vanadium oxide based $SO_2$ oxidation supported molten salt catalysts, Catal. Lett., 78(1-4), 209-214 (2002).   DOI
8 H. N. Sharma, Y. Sun, and E. A. Glascoe, Microkinetic modeling of $H_2SO_4$ formation on Pt based diesel oxidation catalysts, Appl. Catal. B: Environ., 220, 348-335 (2018).   DOI
9 A. Christodoulakis and S. Boghosian, Molecular structure of supported molten salt catalysts for $SO_2$ oxidation, J. Catal., 215, 139-150 (2003).   DOI
10 S. Koutsopoulos, S. B. Rasmussen, K. M. Eriksen, and R. Fehrmann, The role of support and promoter on the oxidation of sulfur dioxide using platinum based catalysts, Appl. Catal. A: Gen., 306(7), 142-148 (2006).   DOI
11 J. P. Dunn, P. R. Koppula, H. G. Stenger, and I. E. Wachs, Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts, Appl. Calal. B: Environ., 19, 103-117 (1998).   DOI
12 D. W. Kwon and S. C. Hong, Enhancement of performance and sulfur resistance of ceria-doped V/Sb/Ti by sulfation for selective catalytic reduction of NOx with ammonia, RSC Adv., 6, 1169-1181 (2016).   DOI
13 M. R. Bankmann, R. Brand, B. H. Enger, and J. Ohmer, Foming of high surface area $TiO_2$ to catalyst supports, Catal. Today, 14, 225-242 (1992).   DOI
14 Y. Sarbassov, L. Duan, V. Manovic, and E. J. Anthony, Sulfur trioxide formation/emissions in coal-fired air-and oxy-fuel combustion processes: A review, Greenhouse Gas Sci. Technol., 8, 402-428 (2018).   DOI
15 G. J. Kim, S. M. Lee, S. C. Hong, and S. S. Kim, Active oxygen species adsorbed on the catalyst surface and its effect on formaldehyde oxidation over Pt/$TiO_2$ catalysts at room temperature; Role of the Pt valence state on this reaction?, RSC Adv., 8, 3626-3636 (2018).   DOI
16 X. Du, J. Xue, X. Wang, Y. Chen, J. Ran, and L. Zhang, Oxidation of sulfur dioxide over $V_2O_5$/$TiO_2$ catalyst with low vanadium loading: A theoretical study, J. Phys. Chem. C, 122(8), 4517-4523 (2018).   DOI
17 M. A. V. Spronsen, J. W. M. Frenken, and I. M. N. Groot, Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts, Chem. Soc. Rev., 46, 4347-4374 (2017).   DOI
18 V. L. Boris and K. G. Andrew, Catalytic oxidation of hydrogen on platinum, J. Therm. Anal. Calorim, 112, 815-223 (2013).   DOI
19 K. Czupryn, I. Kocemba, and J. Rynkowski, Photocatalytic CO oxidation with water ove Pt/$TiO_2$ catalysts, Reac. Kinet. Mech. Cat., 124, 187-201 (2018).   DOI
20 Y. Liang, X. Ding, M. Zhao, J. Wang, and Y. Chen, Effect of valence state and particle size on NO oxidation in fresh and aged Pt-based diesel oxidation catalysts, Appl. Surf. Sci., 443(15), 336-344 (2018).   DOI
21 G. J. Kim, D. W. Kwon, J. H. Shin, K. W. Kim, and S. C. Hong, Influence of the addition of vanadium to Pt/$TiO_2$ catalyst on the selective catalytic oxidation of $NH_3$ to $N_2$, Environ. Technol., 40(19), 2588-2600 (2019).   DOI
22 A. Borgna, T. F. Garetto, C. R. Apestequ, F. L. Normand, and B. Moraweck, Sintering of chlorinated Pt/$\gamma$-$Al_2O_3$ catalysts: An in situ study by X-ray absorption spectroscopy, J. Catal., 186, 433-441 (1999).   DOI
23 C. Wang, X.K. Gu, H. Yan, Y. Lin, J. Li, D. Liu, W.X. Li, and J. Lu, Water-mediated Mars-Van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst, ACS Catal., 7, 887-891 (2017).   DOI
24 S. S. Kim, K. H. Park, and S. C. Hong, A study on HCHO oxidation characteristics at room temperature using a Pt/$TiO_2$ catalyst, Appl. Catal. A: Gen., 398, 96-103 (2011).   DOI
25 B. A. De Angelis, Metal-support and metal-additive effects in catalysis, J. Mol. Catal., 19, 289-289 (1983).   DOI
26 S. Proch, J. Herrmannsdorfer, R. Kempe, C. Kern, A. Jess, L. Seyfarth, and J. Senker, Pt@MOF-177: Synthesis, room-temperature hydrogen storage and oxidation catalysis, Chem. Eur. J., 14, 8204-8212 (2008).   DOI
27 P. Cordoba, Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs, Fuel, 144(15), 274-286 (2015).   DOI