Synthesis and Oxygen Reduction Reaction Evaluation of 20% Pt/C for Polymer Electrolyte Fuel Cell

고분자전해질 연료전지용 20% Pt/C 캐소드 촉매 제조 및 산소환원반응 평가

  • Kim, Jinhwan (Korean Research Institute of Chemical Technology, Energy Materials Center) ;
  • Kang, Suk-Min (Korean Research Institute of Chemical Technology, Energy Materials Center) ;
  • Thube, Dilip. R. (Korean Research Institute of Chemical Technology, Energy Materials Center) ;
  • Ryu, Hojin (Korean Research Institute of Chemical Technology, Energy Materials Center)
  • 김진환 (한국화학연구원 에너지소재센터) ;
  • 강석민 (한국화학연구원 에너지소재센터) ;
  • ;
  • 류호진 (한국화학연구원 에너지소재센터)
  • Received : 2009.02.20
  • Published : 2009.07.25

Abstract

In order to commercialize Polymer Electrolyte Fuel Cell (PEFC), the cathode catalyst such as Platinum supported Carbon (Pt/C) need to have a high activity of Oxygen Reduction Reaction (ORR). In this study, the 20% Pt/C was synthesized using the chemical reduction method while the crystallinity of Platinum (Pt) particles were controlled under heat treatment conditions. The activity of synthesized Pt catalysts was evaluated using electrochemical measurement. Compared with the $i_{ORR}$ at 0.8 V of 20% Pt/C heat-treated at $500^{\circ}C$ and the 20% Pt/C that were not heated and commercial 20% Pt/C, the $i_{ORR}$ at 0.8 V of 20% Pt/C heattreated at $500^{\circ}C$ was 9.5 and 1.7 times higher than those of the 20% Pt/C and commercial 20% Pt/C that were not heated. It was considered that the crystallinity and particle size affect the ORR activity of the Pt/C catalysts.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. A. Ermete. Applied Catalysis B: Environmental 74, 324 (2007) https://doi.org/10.1016/j.apcatb.2007.03.002
  2. A. Ermete, Applied Catalysis B: Environmental 74, 337 (2007) https://doi.org/10.1016/j.apcatb.2007.03.001
  3. T. Toda, H. Igarashi, H. Uchida, and M. Watanabe, J. Electrochem. Soc. 146, 3750 (1999) https://doi.org/10.1149/1.1392544
  4. S. Mukerjee, S. Srinirasan, M. P. Soriaga, and J. McBreen, J. Phys. Chem. 99, 4577 (1995) https://doi.org/10.1021/j100013a032
  5. K. Shirlaine, Y. Chengfei, M. Prasanna, S. Ratndeep, S. Peter, J. of Power Sources 172, 50 (2007) https://doi.org/10.1016/j.jpowsour.2007.01.002
  6. W. Wenming, Z. Dan, D. Chong, Z. Zhiqing, Z. Xigui, X. Baojia, Y. Hui, and L. A. Daniel, J. of Power Sources 167,243 (2007) https://doi.org/10.1016/j.jpowsour.2007.02.013
  7. R. C. S. Jose, A. Ermete, and R. G. Ernesto, J. of Power Sources 141, 13 (2005) https://doi.org/10.1016/j.jpowsour.2004.08.048
  8. A. G. Hubert, S. K. Shyam, S. Bhaskar, and T. W. Frederick, Applied Catalysis B: Environmental 56, 9 (2005) https://doi.org/10.1016/j.apcatb.2004.06.021
  9. Y. Ping, P. Marianne, and P. Paul, J. of Power Sources 144,11 (2005) https://doi.org/10.1016/j.jpowsour.2004.11.067
  10. A. Ermete, R. C. S. Jose, M. da S. Robson, and R. G. Ernesto, Mat. Chem. Phys. 101, 395 (2007) https://doi.org/10.1016/j.matchemphys.2006.07.004
  11. J.-H. Kim, Akimitsu Ishihara, Shigenori Mitsushima, Nobuyuki Kamiya, Ken-ichiro Ota, Electrochimica Acta 52, 2492 (2007) https://doi.org/10.1016/j.electacta.2006.08.059
  12. Youta Maekawa, Akimitsu Ishihara, Jin-Hwan Kim, Shigenori Mitsushima, and Ken-ichiro Ota, Electrochem.Solid-State Lett. 11, B109 (2008) https://doi.org/10.1149/1.2916441
  13. P. N. Ross Jr., J. Electrochem. Soc. 126, 78 (1979) https://doi.org/10.1149/1.2128991
  14. P. El Kadiri, R. Faure, and R. Durand, J. Electroanal. Chem. 301, 177 (1991) https://doi.org/10.1016/0022-0728(91)85468-5
  15. N. M. Markovic, R. R. Adzic, B. D. Cahan, and E. Yeager, J. Electroanal. Chem. 377, 249 (1994) https://doi.org/10.1016/0022-0728(94)03467-2
  16. N. M. Markovic, H. A. Gasteiger, and P. N. Ross, J. Phys. Chem. 99, 3411 (1995) https://doi.org/10.1021/j100011a001
  17. N. M. Markovic, N. S. Marinkovic, and R. R. Adzic, J. Electroanal. Chem. 241, 309 (1988) https://doi.org/10.1016/0022-0728(88)85134-9