• Title/Summary/Keyword: Plating rate

Search Result 261, Processing Time 0.024 seconds

Effect of Compositional Ratio of Additives on the Plating Properties in Environment-Friendly Electroless Plating Reaction (친환경 무전해 도금반응에서 첨가제의 조성비가 도금특성에 미치는 영향)

  • Chun, Kyung-Soo;Paik, Gwi-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4015-4021
    • /
    • 2011
  • The purpose of this study is to investigate the effect of compositional ratio of additives, such as potassium ferrocyanide, aminoacetic acid (=glycine) and 2,2'-dipyridyl, on the physical properties of copper layer deposited by environment-friendly electroless plating reaction. The highest plating rate of copper layer, $9.5mg{\cdot}cm^{-2}{\cdot}hr^{-1}$, was obtained at 20 mg/L of potassium ferrocyanide and 0.01 mol/L of aminoacetic acid, which coincided with the change in the hardness of the copper layer. In the additives used in this study, potassium ferrocyanide was considered to improve the plating rate, aminoacetic acid increased the hardness value of deposited films and 2,2'-dipyridyl enhanced the brightness of copper deposited films.

Preparation of Electromagnetic Wave Shielding Fabrics by Electroless Plating (무전해 도금법에 의한 전자파 차단 의류소재의 제조)

  • Kim Su Mi;Song Wha Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.1 s.139
    • /
    • pp.149-156
    • /
    • 2005
  • The purpose of this study was to produce the high quality of electromagnetic wave shielding fabrics. In this study, we have produced polyester fabrics by electroless Ag plating. The untreated polyester was etched with $4\%$ NaOH solution added accelerant(Benzyl Dimethyl Dodecyl Ammonium Chloride) then it was catalyzed by $SnCl_2$ solution and activated by $PdCl_2$ solution. Electroless Ag plating was carried out by changing conditions such as temperature. time, weight loss rate of polyester and kind of reducing agents. The electromagnetic wave shielding effectiveness of polyester fabric by electroless Ag plating was measured by RF Impedance Analyzer and element of electromagnetic wave shielding substance was measured using Electron probe micro analyzer. The results were as follows; The plating bath using potassium sodium tartrate by reducing agent was excellent electromagnetic wave shielding effectiveness. Element of electromagnetic wave shielding substance was silver. Electromagnetic wave shielding effectiveness was shown over 64dB at the temperature of $40^{\circ}C$, treating time 30min., weight loss rate $20\%$.

Properties of Conformal Antenna for Mobile Phone by Laser Direct Structuring

  • Park, Sang-Hoon;Kim, Gi-Ho;Jeon, Yong-Seung;Na, Ha-Sun;Seong, Won-Mo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.246-249
    • /
    • 2007
  • A triple-band antenna was developed and fabricated by LDS(Laser Direct Structuring) process. The effects of the plating rate and heat treatment condition were investigated and the gains of fabricated antennas were measured at various frequencies. The laser irradiated surface shows clearly that there are prominence and depression. It shows anchoring effect between a plating material and ablation surface. The plating rate was decreased when the plating material is exhausted in the solution. This solution needs to refreshed by the new aid solution. The copper plating thickness is decreased with the increase of heat treatment temperature in the same time but it does not change other condition. The gain of LDS antenna showed higher than the generally processed antenna. This result was related with practical use of the dimension and effective dielectric constant.

A Study on the Feasibility of a Cyanide-Free Silver Plating Bath (비시안 은도금욕의 가능성에 관한 연구)

  • 이상화
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.2
    • /
    • pp.140-145
    • /
    • 1996
  • Silver deposits formed on copper substrates by replacement reactions show poor adhesion, and a silver film plated on such a deposit does not adhere. Silver ion makes a highly stable complex with cyanide ion, so that in a silver cyanide solution, the activity of silver ion is very small. This is one of the reasons for the universal use of cyanide baths in the industrial silver plating. However, the consideration of the difference between the values of the stability constants for bath the silver-iodide complex and the copper-iodide complex suggest that the rate of replacement deposition of silver on the copper substrate in si]ver-potassium iodide solution, could be comparatively low. To confirm this, the rate of replacement deposition of silver in both a silver-potassium iodide solution ($AgNO_3$0.10 mol/L, KI 2.00 mol/L ) and a strike silver plating bath (AgCN 0.028 mol/L, KCN 1.15 mol/L ) was estimated from the current density corresponding to the point of intersection of the anodic and the cathodic polarization curves. These estimated values were almost the same, and it is suggested that the silver-potassium iodide solution is not only a cyanide free silver plating bath capable of employing a copper substrate but a silver plating bath which requires no strike plating.

  • PDF

Ni Plating Technology for PWR Reactor Vessel Cladding Repair

  • Hwang, Seong Sik;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.190-195
    • /
    • 2019
  • SA508 low-alloy steel for a reactor vessel was exposed to primary water in a pressurized water reactor (PWR) plant because the cladding layer of type 309 stainless steel for the RPV was removed, due to an accident in which the detachment of the thermal sleeve occurred. The major advantage of the electrochemical deposition (ECD) Ni plating technique is that the reactor pressure vessel can be repaired without significant thermal effects, and Ni has solid corrosion resistance that can withstand boric acid. The corrosion rate assessment of the damaged part was performed, and its trend was analyzed. Essential variables of the Ni plating for repair of the damaged part were derived. These conditions are applicable variables for the repair plating device, and have been carefully adjusted using the repair plating device. The process for establishing ASME technical standards called Code Case N-840 is described. The process of developing Ni-plating devices, and the electroplating procedure specification (EPS) are described.

Effect of Current Density on Nickel Surface Treatment Process (니켈 표면처리공정에서 전류밀도 효과분석)

  • Kim, Yong-Woon;Joeng, Koo-Hyung;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.228-235
    • /
    • 2008
  • Nickel plating thickness increased with the electric current density, and the augmentation was more thick in $6{\sim}10A/dm^2$ than low current. Hull-cell analysis was tested to evaluate the current density. Optimum thickness was obtained at a temperature of $60^{\circ}C$, and the pH fluctuation of 3.5~4.0. Over the Nickel ion concentration of 300 g/L, plating thickness increased with the current density. The rate of decrease in nickel ion concentration was increased with the current density. The quantity of plating electro-deposition was increased at the anode surface, which was correlated with the increase of plating thickness. The plating thickness was increased because of the quick plating speed. However, the condition of the plating surface becomes irregular and the minuteness of nickel plating layer was reduced with the plating rate. After the corrosion test of 25 h, it was resulted in that maintaining low electric current density is desirable for the excellent corrosion resistance in lustered nickel plating. According to the program simulation, the thickness of diffusion layer was increased and the concentration of anode surface was lowered for the higher current densities. The concentration profile showed the regular distribution at low electric current density. The field plating process was controlled by the electric current density and the plating thickness instead of plating time for the productivity. The surface physical property of plating structure or corrosion resistance was excellent in the case of low electric current density.

Effects of Complex Agents and pH on the Deposition Behavior of Electroless Ni-Co-P Film (착화제와 pH가 무전해 Ni-Co-P 도금 피막의 석출거동에 미치는 영향)

  • Choi, Byuck-Keun;Yang, Seung-Gi;Shin, Ji-Wung;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.107-111
    • /
    • 2014
  • Electroless plated Ni-Co-P films have been used to suppress the electromagnetic waves from magnetic recording media, and the suppression is known to be achieved with films made with optimized plating composition and plating condition. Effects of complexing agents on the deposition rate and bath stability of Ni-Co-P film were studied using sodium citrate, sodium tartrate and multi-complex agents containing both of them. Deposition of electroless Ni-Co-P platings was dependent upon the complexing agents. Deposition rate was twice when using sodium tartrate compared to that using sodium citrate. And it was slightly slower with multi-complex agents than with sodium tartrate, bath stability being declined in the former. Deposition rate increased with increasing pH until pH 11. Excellent bath stability and good deposition rate were obtained using multi-complex agent as sodium citrate 0.10 mol/L and sodium tartrate 0.15 mol/L in the electroless Ni-Co-P plating films.

Deposition behavior of cyanide-free electroless Au plating solution using thiomalic acid as complexing agent and aminoethanethiol as reducing agent and characteristics of plated Au film (티오말산을 착화제로 하고 아미노에탄티올을 환원제로 하는 비시안계 무전해 Au 도금액의 석출 거동 및 도금 특성)

  • Han, Jaeho;Kim, DongHyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.2
    • /
    • pp.102-119
    • /
    • 2022
  • Gold plating is used as a coating of connecter in printed circuit boards, ceramic integrated circuit packages, semiconductor devices and so on, because the film has excellent electric conductivity, solderability and chemical properties such as durability to acid and other chemicals. As increasing the demand for miniaturization of printed circuit boards and downsizing of electronic devices, several types of electroless gold plating solutions have been developed. Most of these conventional gold plating solutions contain cyanide compounds as a complexing agent. The gold film obtained from such baths usually satisfies the requirements for electronic parts mentioned above. However, cyanide bath is highly toxic and it always has some possibility to cause serious problems in working environment or other administrative aspects. The object of this investigation was to develop a cyanide-free electroless gold plating process that assures the high stability of the solution and gives the excellent solderability of the deposited film. The investigation reported herein is intended to establish plating bath composition and plating conditions for electroless gold plating, with thiomalic acid as a complexing agent. At the same time, we have investigated the solution stability against nickel ion and pull strength of solder ball. Furthermore, by examining the characteristics of the plated Au plating film, the problems of the newly developed electroless Au plating solution were improved and the applicability to various industrial fields was examined. New type electroless gold-plating bath which containing thiomalic acid as a complexing agent showing so good solution stability and film properties as cyanide bath. And this bath shows the excellent stability even if the dissolved nickel ion was added from under coated nickel film, which can be used at the neutral pH range.

The Effects of Additives and Residual Stresses on the Electroless Nickel Plating on Carbon Substrate (첨가제와 잔류응력이 탄소 기지상 무전해 니켈도금에 미치는 영향)

  • Cheon, So-Young;Rhym, Young-Mok;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.43-48
    • /
    • 2011
  • Electroless nickel platings on carbon substrate were investigated for porous MCFC electrode applications. Acidic bath and alkaline bath were used in electroless nickel plating on carbon substrates. The rate of electroless plating in alkaline bath was faster than that in acidic bath. As pH was increased, the deposition rate was increased in both baths and the content of phosphorus in nickel deposit was decreased. The residual stresses of nickel deposit from acidic bath showed the compressive stress and on the other hand those from alkaline bath showed the high tensile stress. High tensile internal stress in nickel deposit caused the cracks over pH 11. Thiourea was added to both acidic and alkaline bath. The deposition rate of nickel was increased upto 0.5 ppm of thiourea and decreased. The maximum concentration of thiourea for the electroless nickel plating on carbon substrate was 1.5 ppm in both acidic and alkaline bath. Succinic acid was added to acidic bath. Addition of succinic acid up to 5 g/L increased the deposition rate of nickel and beyond which the deposition rate was decreased and maintained.

Effects of Process Variables on Preparation of Silver-Coated Copper Flakes Using Hydroquinone Reducing Agent (하이드로퀴논 환원제를 사용한 은코팅 구리 플레이크의 제조에서 공정 변수의 영향)

  • Chee, Sang-Soo;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.57-62
    • /
    • 2017
  • In the process for preparing Ag-coated Cu flakes by electroless silver plating using hydroquinone reducing agent, Ag coating qualities were compared by changing various process parameters such as type of pretreatment solution, plating temperature, pH of plating solution, type and injection rate of plating solution, and pulp density. Effective pretreatment solution for removing the oxide layer on a Cu flake was preferentially suggested. The conditions of low plating temperature, pH value of 4.34, slow injection rate of Ag plating solution, elimination of deionized water in the Ag plating solution, and high pulp density significantly suppressed the formation of separated tiny Ag particles, and thus the surface coverage of Ag coating on Cu flakes was enhanced.