• Title/Summary/Keyword: Plate with openings

Search Result 55, Processing Time 0.026 seconds

Numerical procedure for the vibration analysis of arbitrarily constrained stiffened panels with openings

  • Cho, Dae Seung;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.763-774
    • /
    • 2014
  • A simple and efficient vibration analysis procedure for stiffened panels with openings and arbitrary boundary conditions based on the assumed mode method is presented. Natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion, where Mindlin theory is applied for plate and Timoshenko beam theory for stiffeners. The effect of stiffeners on vibration response is taken into account by adding their strain and kinetic energies to the corresponding plate energies whereas the strain and kinetic energies of openings are subtracted from the plate energies. Different stiffened panels with various opening shapes and dispositions for several combinations of boundary conditions are analyzed and the results show good agreement with those obtained by the finite element analysis. Hence, the proposed procedure is especially appropriate for use in the preliminary design stage of stiffened panels with openings.

Approximate natural vibration analysis of rectangular plates with openings using assumed mode method

  • Cho, Dae Seung;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.478-491
    • /
    • 2013
  • Natural vibration analysis of plates with openings of different shape represents an important issue in naval architecture and ocean engineering applications. In this paper, a procedure for vibration analysis of plates with openings and arbitrary edge constraints is presented. It is based on the assumed mode method, where natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion. The presented solution represents an extension of a procedure for natural vibration analysis of rectangular plates without openings, which has been recently presented in the literature. The effect of an opening is taken into account in an intuitive way, i.e. by subtracting its energy from the total plate energy without opening. Illustrative numerical examples include dynamic analysis of rectangular plates with rectangular, elliptic, circular as well as oval openings with various plate thicknesses and different combinations of boundary conditions. The results are compared with those obtained by the finite element method (FEM) as well as those available in the relevant literature, and very good agreement is achieved.

Frequency response of rectangular plates with free-edge openings and carlings subjected to point excitation force and enforced displacement at boundaries

  • Cho, Dae Seung;Kim, Byung Hee;Kim, Jin-Hyeong;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.117-126
    • /
    • 2016
  • In this paper, a numerical procedure for the natural vibration analysis of plates with openings and carlings based on the assumed mode method is extended to assess their forced response. Firstly, natural response of plates with openings and carlings is calculated from the eigenvalue equation derived by using Lagrange's equation of motion. Secondly, the mode superposition method is applied to determine frequency response. Mindlin theory is adopted for plate modelling and the effect of openings is taken into account by subtracting their potential and kinetic energies from the corresponding plate energies. Natural and frequency response of plates with openings and carlings subjected to point excitation force and enforced acceleration at boundaries, respectively, is analysed by using developed in-house code. For the validation of the developed method and the code, extensive numerical results, related to plates with different opening shape, carlings and boundary conditions, are compared with numerical data from the relevant literature and with finite element solutions obtained by general finite element tool.

Numerical study of the cyclic behavior of steel plate shear wall systems (SPSWs) with differently shaped openings

  • Ali, Mustafa M.;Osman, S.A.;Husam, O.A.;Al-Zand, Ahmed W.
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.361-373
    • /
    • 2018
  • This paper presents the development of finite element (FE) models to simulate the behavior of diagonally stiffened steel plate shear wall systems (SPSWs) with differently shaped openings subjected to a cyclic load. This walling system has the potential to be used for shear elements that resist lateral loads in steel-framed buildings. A number of $\text\tiny{^1/_2}$-scale one-story buildings that were un-stiffened, stiffened and stiffened with opening SPSWs are modeled and simulated using the finite element method based on experimental data from previous research. After validating the finite element (FE) models, the effects of infill plate thickness on the cyclic behavior of steel shear walls are investigated. Furthermore, triple diagonal stiffeners are added to the steel infill plates of the SPSWs, and the effects are studied. Moreover, the effects of a number of differently shaped openings applied to the infill plate are studied. The results indicate that the bearing capacity and shear resistance are affected positively by increasing the infill plate thickness and by adding triple diagonal stiffeners. In addition, the cyclic behavior of SPSWs is improved, even with an opening in the SPSWs.

Analysis of Compression Characteristics of the Steel Plate-Concrete Wall Structures with Openings (개구부가 있는 강판콘크리트 벽체의 압축특성 분석)

  • Choi, Byong-Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.245-256
    • /
    • 2012
  • The objective of this study is to investigate the effect of the openings on the structural behavior of SC walls. The test parameters were with or without the reinforcing of openings and sleeve thickness. The common failure showed that the crack in the concrete progressed with the plate's local buckling between the shear connectors. The failure of the openings showed that the vertical wall of the sleeve buckled toward the opening inside. The plate buckling load showed a similar value with or without the sleeve of the opening, respectively. However, the maximum compressive strength of the specimen without the opening was higher than that of specimen with the opening.

Evaluation of cyclic behavior of lateral load resisting system with eccentric brace and steel plate

  • Reza Khalili Sarbangoli;Ahmad Maleki;Ramin K. Badri
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.239-252
    • /
    • 2024
  • Steel plate shear walls (SPSWs) are classified as lateral load-resisting systems. The feasibility of openings in the steel plate is a characteristic of SPSWs. The use of openings in SPSWs can lower the load capacity, stiffness, and energy dissipation. This study proposes a novel form of SPSWs that provides convenient access through openings by combining steel plates and eccentrically braced frames (EBFs). The proposed system also avoids a substantial reduction in the strength and stiffness. Hence, various geometric forms were analyzed through two different structural approaches. Groups 1, 2, and 3 included a steel EBF with a steel plate between the column and EBF in order to improve system performance. In Group 4, the proposed system was evaluated within an SPSW with openings and an EBF on the opening edge. To evaluate the performance of the proposed systems, the nonlinear finite element method (NL-FEM) was employed under cyclic loading. The hysteresis (load-drift) curve, stress contour, stiffness, and damping were evaluated as the structural outputs. The numerical models indicated that local buckling within the middle plate-EBF connection prevented a diagonal tension field. Moreover, in group 4, the EBF and stiffeners on the opening edge enhanced the structural response by approximately 7.5% in comparison with the base SPSW system.

Numerical study on buckling of steel web plates with openings

  • Serror, Mohammed H.;Hamed, Ahmed N.;Mourad, Sherif A.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1417-1443
    • /
    • 2016
  • Cellular and castellated steel beams are used to obtain higher stiffness and bending capacity using the same weight of steel. In addition, the beam openings may be used as a pass for different mechanical fixtures such as ducts and pipes. The aim of this study is to investigate the effect of different parameters on both elastic and inelastic critical buckling stresses of steel web plates with openings. These parameters are plate aspect ratio; opening shape (circular or rectangular); end distance to the first opening; opening spacing; opening size; plate slenderness ratio; steel grade; and initial web imperfection. The web/flange interaction has been simplified by web edge restraints representing simply supported boundary conditions. A numerical parametric study has been performed through linear and nonlinear finite element (FE) models, where the FE results have been verified against both experimental and numerical results in the literature. The web plates are subject to in-plane linearly varying compression with different loading patterns, ranging from uniform compression to pure bending. A buckling stress modification factor (${\beta}$-factor) has been introduced as a ratio of buckling stress of web plate with openings to buckling stress of the corresponding solid web plate. The variation of ${\beta}$-factor against the aforementioned parameters has been reported. Furthermore, the critical plate slenderness ratio separating elastic buckling and yielding has been identified and discussed for two steel grades of DIN-17100, namely: ST-37/2 and ST-52/3. The FE results revealed that the minimum ${\beta}$-factor is 0.9 for web plates under uniform compression and 0.7 for those under both compression and tension.

Topology design informatics for optimally allocating glue-laminated timber members of steel-composite beams with web-openings (강합성 중공 웨브의 구조용 목재 최적배치를 위한 강성기반 위상설계 정보)

  • Lee, Dongkyu;Banh, Thien Thanh
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.47-55
    • /
    • 2022
  • In this study, we focus on the feasibility of structural topology optimization for a steel-timber composite beam design of optimally allocating glue-laminated timbers into a web with openings under the condition of given steel flanges. The motivation of this study is to topologically take maximal stiffness harmonizing both tension and compression performance of the steel-timber composite beam and become the eco-frandly timber design for buidling members. As a result of this study, the key web-openings allocation becomes triangle spaces, i.e., empty or no materials, of optimal topologies of both a pure timber plate and a steel flange-web timber plate without web-openings. Several applicable examples verify the effectiveness of topology optimization for steel-timber beams with web-openings.

Elastic Analysis of Orthotropic Thick Plates with Perforated Many Holes (직교 이방성 관통 다공 후판의 탄성 해석)

  • Kim, Woo-Sik;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.59-65
    • /
    • 2002
  • The structures with many perforated openings are widely used as a load-carrying element in the fields of civil engineering works, top slab of prestressed concrete reactor vessel, petrochemical industries and the like. Perforated concrete plates are usually thick. Therefore, the effect of transverse shear deformation is not negligible. This paper describes a new analytical method of perforated plates combining both the finite element method for effective elastic constants and the usual method in solving orthotropic plate with transverse shear deformation.

  • PDF

Utilizing CFRP and steel plates for repair of damaged RC beams with circular web openings

  • Fayyadh, Moatasem M.;Abed, Mohammed J.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.49-61
    • /
    • 2022
  • This paper presents an experimental investigation into the effectiveness of using carbon fibre reinforced polymer (CFRP) and steel plates to repair damaged reinforced concrete (RC) beams with circular web openings at shear zones. It highlights the effectiveness of externally bonded CFRP and steel plates in repairing damaged RC beams by analysing the repaired beams'load capacity, deflection, strain, and failure mode. For the experiment, a total of five beams were used, with one solid beam as a control beam and the other four beams having an opening near the shear zone. Two beams with openings were repaired using inclined and vertical configuration CFRP plates, and the other two were repaired using inclined and vertical configuration steel plates. The results confirm the effectiveness of CFRP and steel plates for repairing damaged RC beams with circular openings. The CFRP and steel plates significantly increase ultimate capacity and reduce deflection under the openings. The inclined configuration of both CFRP and steel plates was more effective than the vertical configuration. Using an inclined configuration not only increases the ultimate capacity of the beams but also changes the mode of failure from shear to flexural.