DOI QR코드

DOI QR Code

Topology design informatics for optimally allocating glue-laminated timber members of steel-composite beams with web-openings

강합성 중공 웨브의 구조용 목재 최적배치를 위한 강성기반 위상설계 정보

  • Lee, Dongkyu (Dept. of Architectural Engineering, Sejong University) ;
  • Banh, Thien Thanh (Dept. of Architectural Engineering, Sejong University)
  • Received : 2022.05.02
  • Accepted : 2022.06.13
  • Published : 2022.06.15

Abstract

In this study, we focus on the feasibility of structural topology optimization for a steel-timber composite beam design of optimally allocating glue-laminated timbers into a web with openings under the condition of given steel flanges. The motivation of this study is to topologically take maximal stiffness harmonizing both tension and compression performance of the steel-timber composite beam and become the eco-frandly timber design for buidling members. As a result of this study, the key web-openings allocation becomes triangle spaces, i.e., empty or no materials, of optimal topologies of both a pure timber plate and a steel flange-web timber plate without web-openings. Several applicable examples verify the effectiveness of topology optimization for steel-timber beams with web-openings.

Keywords

Acknowledgement

이 논문은 2019년도 정부(과학기술정보통신부)의 제원으로 한국연구재단(NRF-2022R1A2 C1003776)에 의해 수행되었습니다.

References

  1. Bendsoe, M. P., & Kikuchi, N., "Generating optimal topologies in structural design using a homogenization method", Computer Methods in Applied Mechanics and Engineering, Vol.71, No.2, pp.197-224, 1988, doi: 10.1016/0045-7825(88)90086-2
  2. Liu, P., Kang, Z., & Luo, Y., "Two-scale concurrent topology optimization of lattice structures with connectable microstructures", Additive Manufacturing, Vol.36, pp.101427, 2020, doi: 10.1016/j.compstruct.2021.114224
  3. Vatanabe, S. L., Paulino, G. H., & Silva, E. C. N., "Design of functionally graded piezo-composites using topology optimization and homogenization-Toward effective energy harvesting materials", Computer Methods in Applied Mechanics and Engineering, Vol.266, pp.205-218, 2013, doi: 0.1016/j.cma.2013.07.003 https://doi.org/10.1016/j.cma.2013.07.003
  4. Tavakoli, R, "Optimal design of multiphase composites under elastodynamic loading", Computer Methods in Applied Mechanics and Engineering, Vol.300, pp.265-293, 2016, doi: 10.1016/j.cma.2015.11.026
  5. Wu, S., Zhang, Y., & Liu, S., "Transient thermal dissipation efficiency based method for topology optimization of transient heat conduction structures", International Journal of Heat and Mass Transfer, Vol.170, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121004
  6. Shobeiri, V., "The topology optimization design for cracked structures", Engineering Analysis with Boundary Elements, Vol.58, pp.26-38, 2015, doi: /10.1016/j.enganabound.2015.03.002
  7. Banh, T. T., & Lee, D., "Multi-material topology optimization design for continuum structures with crack patterns", Composite Structures, Vol.186, pp.193-209, 2018, doi:10.1016/j.compstruct.2017.11.088
  8. Nguyen, A. P., & Banh, T. T., "Design of multiphase carbon fiber reinforcement of crack existing concrete structures using topology optimization", Steel and Composite Structures, An International Journal, Vol.29, pp.635-645, 2018, doi: 10.12989/scs.2018.29.5.635
  9. Thomsen, J., "Topology optimization of structures composed of one or two materials", Journal of Structural Optimization, Vol.5, No.1, pp.108-115, 1992, doi: 10.1007/BF01744703
  10. Huang, X., & Xie, Y. M., "Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials", Computational Mechanics,, Vol.43, pp.393-401, 2009, doi: 10.1007/s00466-008-0312-0
  11. Lukaszewska, E., Fragiacomo, M., & Johnsson, H., "Laboratory Tests and Numerical Analyses of Prefabricated Timber-Concrete Composite Floors", Eng.- ASCE Vol.136(1), pp.46-55, 2010, doi:10.1061/(ASCE)ST.1943-541X.0000080
  12. Szumigala. M., Szumigala. E., and Polus. L., "Laboratory Tests of New Connectors for Timber-Concrete Composite Structures", Eng. Transactions, Vol.66, No.22, pp.161-173, 2018.
  13. Szumigala, M., Szumigala, E., & Polus, L. "An analysis of the load-bearing capacity of timber-concrete composite beams with profiled sheeting", Civil and Environmental Engineering Reports, Vol.27, No.4, pp.143-156, 2017, doi: 10.1515/ceer-2017-0057
  14. Hassanieh, A., Valipour, H. R., & Bradford, M. A., "Experimental and analytical behaviour of steel-timber composite connections", Constr. Build. Mater., Vol.118, pp.63-75, 2016a, doi:10.1016/j.conbuildmat.2016.05.052
  15. Hassanieh, A., Valipour, H. R., & Bradford, M. A., Experimental and numerical study of steel-timber composite (STC) beams. Journal of Constructional Steel Research, Vol.122, pp.367-378, 2016b, doi: 10.1016/j.jcsr.2016.04.005
  16. Hassanieh, A., Valipour, H. R., Bradford, M. A., & Sandhaas, C., "Modelling of steel-timber composite connections: Validation of finite element model and parametric study", Engineering Structures Vol.138, pp.35-49, 2017a, doi: 10.1016/j.engstruct.2017.02.016
  17. Hassanieh, A., Valipour, H. R., & Bradford, M. A., "Composite connections between CLT slab and steel beam: Experiments and empirical models", Journal of Constructional Steel Research, Vol.138, pp.823-836, 2017b, doi: 10.1016/j.jcsr.2017.09.002
  18. Szumigala, M., Chybinski, M., & Polus, L., "Preliminary Analysis of the Alumini- numtimber Composite Beams", Civil and Environmental Eng. Reports, Vol.27m No.4, pp.131-141, 2017, doi: 10.1515/ceer-2017-0056
  19. Rodacki. K., "The load-bearing capacity of timber-glass composite I-beams made with polyurethane adhesives", Civil and Environmental Eng. Reports, Vol.27, No.44, pp.105-120, 2017, doi: 10.1515/ceer-2017-0054
  20. Stiemer, S., Tesfamariam, S., Karacabeyli, E., & Propovski, M.., "Development of steel- wood hybrid systems for buildings under dynamic loads", In Proceedings of the 7th International Specialty Conference on Behavior of Steel Structures in Seismic Areas (STESSA), Santiago, Chile, Vol.911, 2012.
  21. Scotta, R., Trutalli, D., Fiorin, L., Pozza, L., Marchi, L., & De Stefani, L., "Light Steel-Timber Frame with Composite and Plaster Bracing Panels", Materials, Vol.8, pp.7354-7370, 2015, doi: 10.3390/ma8115386
  22. Tavakoli, R., & Mohseni, S. M., "Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation", Structural and Multidisciplinary Optimization, Vol.49, pp. 621-642, 2014, doi: 10.1007/s00158-013-0999-1
  23. ANSI (American national standards institute), National Design Specification (NDS) Supplement: Design Values for Wood Construction, 2018 Edition. American Wood Council..
  24. Do, D. T., Nguyen-Xuan, H., & Lee, J., "Material optimization of tri-directional functionally graded plates by using deep neural network and isogeometric multimesh design approach", Applied Mathematical Modelling, Vol.87, pp.501-533, 2020, doi:10.1016/j.apm.2020.06.002
  25. Sigmund, O., "A 99 line topology optimization code written in Matlab", Structural and multidisciplinary optimization,. Vol.21, pp.120-127, 2001, 10.1007/s001580050176