Browse > Article
http://dx.doi.org/10.9712/KASS.2022.22.2.47

Topology design informatics for optimally allocating glue-laminated timber members of steel-composite beams with web-openings  

Lee, Dongkyu (Dept. of Architectural Engineering, Sejong University)
Banh, Thien Thanh (Dept. of Architectural Engineering, Sejong University)
Publication Information
Journal of Korean Association for Spatial Structures / v.22, no.2, 2022 , pp. 47-55 More about this Journal
Abstract
In this study, we focus on the feasibility of structural topology optimization for a steel-timber composite beam design of optimally allocating glue-laminated timbers into a web with openings under the condition of given steel flanges. The motivation of this study is to topologically take maximal stiffness harmonizing both tension and compression performance of the steel-timber composite beam and become the eco-frandly timber design for buidling members. As a result of this study, the key web-openings allocation becomes triangle spaces, i.e., empty or no materials, of optimal topologies of both a pure timber plate and a steel flange-web timber plate without web-openings. Several applicable examples verify the effectiveness of topology optimization for steel-timber beams with web-openings.
Keywords
Topology optimization; Web-opening H-beam; Steel-timber composite; Stiffness; Strain energy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Tavakoli, R., & Mohseni, S. M., "Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation", Structural and Multidisciplinary Optimization, Vol.49, pp. 621-642, 2014, doi: 10.1007/s00158-013-0999-1   DOI
2 Sigmund, O., "A 99 line topology optimization code written in Matlab", Structural and multidisciplinary optimization,. Vol.21, pp.120-127, 2001, 10.1007/s001580050176   DOI
3 Shobeiri, V., "The topology optimization design for cracked structures", Engineering Analysis with Boundary Elements, Vol.58, pp.26-38, 2015, doi: /10.1016/j.enganabound.2015.03.002   DOI
4 Banh, T. T., & Lee, D., "Multi-material topology optimization design for continuum structures with crack patterns", Composite Structures, Vol.186, pp.193-209, 2018, doi:10.1016/j.compstruct.2017.11.088   DOI
5 Szumigala, M., Szumigala, E., & Polus, L. "An analysis of the load-bearing capacity of timber-concrete composite beams with profiled sheeting", Civil and Environmental Engineering Reports, Vol.27, No.4, pp.143-156, 2017, doi: 10.1515/ceer-2017-0057   DOI
6 Nguyen, A. P., & Banh, T. T., "Design of multiphase carbon fiber reinforcement of crack existing concrete structures using topology optimization", Steel and Composite Structures, An International Journal, Vol.29, pp.635-645, 2018, doi: 10.12989/scs.2018.29.5.635   DOI
7 Thomsen, J., "Topology optimization of structures composed of one or two materials", Journal of Structural Optimization, Vol.5, No.1, pp.108-115, 1992, doi: 10.1007/BF01744703   DOI
8 Huang, X., & Xie, Y. M., "Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials", Computational Mechanics,, Vol.43, pp.393-401, 2009, doi: 10.1007/s00466-008-0312-0   DOI
9 Lukaszewska, E., Fragiacomo, M., & Johnsson, H., "Laboratory Tests and Numerical Analyses of Prefabricated Timber-Concrete Composite Floors", Eng.- ASCE Vol.136(1), pp.46-55, 2010, doi:10.1061/(ASCE)ST.1943-541X.0000080   DOI
10 Szumigala. M., Szumigala. E., and Polus. L., "Laboratory Tests of New Connectors for Timber-Concrete Composite Structures", Eng. Transactions, Vol.66, No.22, pp.161-173, 2018.
11 Hassanieh, A., Valipour, H. R., & Bradford, M. A., "Experimental and analytical behaviour of steel-timber composite connections", Constr. Build. Mater., Vol.118, pp.63-75, 2016a, doi:10.1016/j.conbuildmat.2016.05.052   DOI
12 Hassanieh, A., Valipour, H. R., Bradford, M. A., & Sandhaas, C., "Modelling of steel-timber composite connections: Validation of finite element model and parametric study", Engineering Structures Vol.138, pp.35-49, 2017a, doi: 10.1016/j.engstruct.2017.02.016   DOI
13 Hassanieh, A., Valipour, H. R., & Bradford, M. A., "Composite connections between CLT slab and steel beam: Experiments and empirical models", Journal of Constructional Steel Research, Vol.138, pp.823-836, 2017b, doi: 10.1016/j.jcsr.2017.09.002   DOI
14 Szumigala, M., Chybinski, M., & Polus, L., "Preliminary Analysis of the Alumini- numtimber Composite Beams", Civil and Environmental Eng. Reports, Vol.27m No.4, pp.131-141, 2017, doi: 10.1515/ceer-2017-0056   DOI
15 Tavakoli, R, "Optimal design of multiphase composites under elastodynamic loading", Computer Methods in Applied Mechanics and Engineering, Vol.300, pp.265-293, 2016, doi: 10.1016/j.cma.2015.11.026   DOI
16 Stiemer, S., Tesfamariam, S., Karacabeyli, E., & Propovski, M.., "Development of steel- wood hybrid systems for buildings under dynamic loads", In Proceedings of the 7th International Specialty Conference on Behavior of Steel Structures in Seismic Areas (STESSA), Santiago, Chile, Vol.911, 2012.
17 Scotta, R., Trutalli, D., Fiorin, L., Pozza, L., Marchi, L., & De Stefani, L., "Light Steel-Timber Frame with Composite and Plaster Bracing Panels", Materials, Vol.8, pp.7354-7370, 2015, doi: 10.3390/ma8115386   DOI
18 Do, D. T., Nguyen-Xuan, H., & Lee, J., "Material optimization of tri-directional functionally graded plates by using deep neural network and isogeometric multimesh design approach", Applied Mathematical Modelling, Vol.87, pp.501-533, 2020, doi:10.1016/j.apm.2020.06.002   DOI
19 Bendsoe, M. P., & Kikuchi, N., "Generating optimal topologies in structural design using a homogenization method", Computer Methods in Applied Mechanics and Engineering, Vol.71, No.2, pp.197-224, 1988, doi: 10.1016/0045-7825(88)90086-2   DOI
20 Vatanabe, S. L., Paulino, G. H., & Silva, E. C. N., "Design of functionally graded piezo-composites using topology optimization and homogenization-Toward effective energy harvesting materials", Computer Methods in Applied Mechanics and Engineering, Vol.266, pp.205-218, 2013, doi: 0.1016/j.cma.2013.07.003   DOI
21 Liu, P., Kang, Z., & Luo, Y., "Two-scale concurrent topology optimization of lattice structures with connectable microstructures", Additive Manufacturing, Vol.36, pp.101427, 2020, doi: 10.1016/j.compstruct.2021.114224   DOI
22 Hassanieh, A., Valipour, H. R., & Bradford, M. A., Experimental and numerical study of steel-timber composite (STC) beams. Journal of Constructional Steel Research, Vol.122, pp.367-378, 2016b, doi: 10.1016/j.jcsr.2016.04.005   DOI
23 Rodacki. K., "The load-bearing capacity of timber-glass composite I-beams made with polyurethane adhesives", Civil and Environmental Eng. Reports, Vol.27, No.44, pp.105-120, 2017, doi: 10.1515/ceer-2017-0054   DOI
24 ANSI (American national standards institute), National Design Specification (NDS) Supplement: Design Values for Wood Construction, 2018 Edition. American Wood Council..
25 Wu, S., Zhang, Y., & Liu, S., "Transient thermal dissipation efficiency based method for topology optimization of transient heat conduction structures", International Journal of Heat and Mass Transfer, Vol.170, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121004   DOI