• Title/Summary/Keyword: Plate girder

Search Result 427, Processing Time 0.022 seconds

A Case study on Effect of Compositeness for Temporary Bridge Integrated Lining Board and Girder (복공판과 주형을 일체화한 가설교량에 대한 합성효과 검토 사례연구)

  • Yoon, Woo-Hyun;Chung, Jee-Seung;Lee, Jong-Soon;Yoon, Yong-Seok;Yang, Sung-Don
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.34-41
    • /
    • 2012
  • In this study, it has been proposed the new type of temporary bridge which is structural performance maximization to integrated cover plate and girder as well as roll of lining board. Of all temporary bridge integrated cover plate and main girder in the form of a new type of structure is advantageous for the judge, but to the field of transport difficulties and challenges due to high altitude operations to take advantage of this challenge and deliver a structured, easy transport, and the synthesis of lining board possible was proposed. Lining board proposed in this study through experimental synthesis and analysis of the factors that influence the effectiveness of the construction and economic development in the construction method was superior, compared to the conventional lining board.

Capacity evaluation of PC-slab composite actions for the railway steel plate girder according to an experimental construction (PC-Slab 합성 철도판형교 유도상화 시험부설에 따른 성능 비교평가)

  • Min, Kyung-Ju;Lee, Sung-Uk;Choi, Hyung-Soo;Woo, Yong-Keun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.697-706
    • /
    • 2011
  • There are more than 800 railway steel plate girder bridges which are in use and the total length is approximately 50 km. Among these, it shall be pointed out that non-ballast rail systems which lay on wood sleepers are the most critical members. To strengthen this type of structures, mainly two methods have been applied. The first one is the most typical method which is to replace the girders with slab girder system or steel composite girders and to add ballast. It is not uncommon that the construction cost of substructure is more than ten time higher than that of superstructures and even in this case, the structural uncertainty for the substructures is not diminished. To resolve above mentioned problems, new method was developed to rehabilitate railway steel girder bridge by adding PC-slab using transport equipment. Using this method, substructure strengthen is rarely required because the additional weight to the bridge superstructure is only up to 1.0t/m. Also it was possible to save the construction cost by reducing construction duration and by simplifying the construction process. Experimental construction was performed for Jewon bridge and measurements were performed before and after construction to verify the bridge capacity.

  • PDF

An Analytical Study on Application of Section Increment at Internal Support with External Prestressing Method to Continuous Steel Plate Girder Bridge (연속 강 플레이트거더교에서 내부지점보강과 외부프리스트레싱의 적용에 관한 해석적 연구)

  • Shim, Jae-Joong;Hong, Sung-Nam;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.128-136
    • /
    • 2010
  • It has been verified that there is an effect of diminishing in section bringing in internal core section reinforcement and external prestressing rather than general plate-girder bridge as a consequence of analysis. In particular, positive effect was seen in the aspect of usability when external prestressing was in application as rises gained from it minimized the hanging down of a bridge. Based on the result of analysis, a sectional diagram applicable per number of girder has been illustrated which made it possible to estimate the intensity of internal stress in the futurewhere number of girder is limited to 4 and regression equation is presented after regression analysis has been carried out.

Prestressing Inducing Effect of Continuous Open-top Steel Box Girder Using Modular CFT Members (모듈형 CFT부재를 이용한 개구제형 연속 강박스 거더의 프리스트레싱 도입 효과)

  • Lee, Hak Joon;Kim, Ryeon-Hak;Cho, Kwang-Il;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.111-119
    • /
    • 2022
  • The increasing sectional stiffness and inducing prestress method of continuous steel box girder using modular CFT members use the restoring force of the CFT module generated from removing the prestressing bars in the CFT module after integrating the prestressed CFT module with the lower steel plate of the steel box girders as a prestressing force. The integrated CFT module in the steel box girder can improve the sectional stiffness of the continuous steel box girder section. To examine the applicability of the introduction of prestressing to the integrated steel box girder using the CFT module, in this study, inducing prestressing tests were conducted using CFT modules for steel plate specimens simulating the lower steel plate of the continuous steel box girder, and FE analyses were conducted for inducing prestressing tests. In addition, to confirm the effect of inducing prestress to the actual steel box girder and increasing sectional stiffness by the CFT modules, FE analyses for the actually applicable continuous steel box section were carried out depending on prestressing force and sectional conditions of the CFT modules, FE analysis results were compared.

A Study of continuous PSC bridge with a reinforcement steel plate (보강강판을 이용한 연속 PSC 교량 공법에 관한 연구)

  • Koo Min-Se;Kim Hun-Hee;Jung Young-Do
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.422-429
    • /
    • 2005
  • It is limited to decrease height or section even by system conversion to indeterminate structure - continuous beam - in existing PSC girder bridges. In this study, the movement of connection is analyzed through actual field test, by increasing stiffness of negative moment area in continuous PSC bridge and developing continuous PSC bridge with embedded steel plate, that can overcome the demerit of existing connection. As a result, it is confirmed that the body unification of the connection is being realized and maintained. Moreover, the height of a span is suggested in continuous PSC girder bridge with embedded steel plate by computational analysis

  • PDF

A Study on the Static Behaviors of Railway Plate Girder Bridges according to Types of Train (열차유형에 따른 판형교의 정적거동에 대한 연구)

  • 박문석;오지택;최진유
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.287-292
    • /
    • 2001
  • Static behaviors of railway plate girder bridges designed by the L-22, a standard load type of the railway specification in Korea, are evaluated by widely eight load cases. The load cases are three real loads, which contain three locomotive types of Saemaul PMC, diesel, and Korea Train Express(KTX), and three design loads, L-22, L-18, and HL-25 loads, in railway specification. Plate girders for analysis have the length of spans of six types:6m, 9m, 12m, 22m, 24m, and 30m. For analysis SAP2000n ,a commercial FEM tool, is used. Dominant axial load types are taken from these results that are maximum deflections, reaction forces, and absolute maximum bending moment in girders.

  • PDF

Fatigue Assessment of Steel Railway Bridge by Service Loading about 65 Years

  • Hong, Sung-Wook;Chai, Won-Kyu;Lee, Myeong-Gu
    • International Journal of Safety
    • /
    • v.9 no.1
    • /
    • pp.12-20
    • /
    • 2010
  • In this study, a series of random field test and dynamic analysis in the time domain were carried out in order to find in the reason of fatigue damage of the main and the secondary members in the 3-span continuous steel plate girder railway bridge being under in service over 60 years. From the measured and the analyzed results, the stress distribution patterns were investigated for the members with fatigue damage. In addition, global and local numerical stress analysis was performed for the members damaged severely by corrosion, to estimate variation of the distribution by corrosion. Finally, a reasonable cut-off ratio in the steel plate railway bridge will be proposed by analyzing the equivalent stress ranges according the ratio.

Effect of Temperature Change on Modal Properties of Plate-Girder Bridges (강판형교의 진동모드특성에 미치는 온도변화의 영향)

  • 김정태;류연선;조현만;윤재웅;백종현
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.489-496
    • /
    • 2002
  • Monitoring frequency change is a tool to indicate the change ill structural parameters. However, even critical reduction of stiffness is predicted in the range of indication errors due to the effect of temperature on the frequency change. In this study, an experimental work to examine the effect of various temperatures on modal characteristics of steel plate-girders is presented. A model plate-girder used for the experiment is described. Natural frequencies are monitored by using two different excitation sources-impact and shaker. The relation between measurement temperatures and natural frequencies are analyzed.

  • PDF

Reinforcement Location of Plate Girders with Two Longitudinal Stiffeners (플레이트 거더의 2단 수평보강재 보강 위치)

  • Son, Byung-Jik;Lee, Kyu-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.93-102
    • /
    • 2009
  • Because steel girder bridge has big slenderness ratio, buckling is very important in design. Local buckling of plate girders having two longitudinal stiffeners in different positions under various load conditions is investigated. Various parametric study according to the change of web height, transverse stiffeners and load conditions are examined. These parametric studies are performed by numerical simulation utilizing finite element method. The objective of this study is to present the rational reinforcement location of two longitudinal stiffeners. The results of analysis are compared to that recommended by korean specifications for road bridges(2003).

Redundancy Evaluation of the Composite Two Steel Plate-Girder Bridges (강합성 플레이트 2-거더교의 여유도 평가)

  • Park, Yong-Myung;Joe, Woom-Do-Ji
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.611-620
    • /
    • 2006
  • The composite two plate-girder bridges are generally defined as a non-redundant load path structure because the bridge can collapse if one of the two girders is seriously damaged by a fatigue crack. In this paper, a numerical study on the evaluation of the after-fracture redundancy of the composite two-girder bridges was accomplished. The evaluation has been performed on the simple and three-span continuous bridges with I-section cross beams which serve as transverse bracing, and with or without the bottom lateral bracing system. The load carrying capacities of the intact and damaged bridges with or without lateral bracing were evaluated from material and geometric nonlinear analysis, respectively and the redundancy was evaluated for each case. It was acknowledged from the analytical results that both simple and continuous intact two-girder bridges have sufficient redundancy even without lateral bracing, but it takes an important role to improve the redundancy of damaged bridges.