• 제목/요약/키워드: Plate Theory

검색결과 1,424건 처리시간 0.025초

Time-Frequency Analysis of Dispersive Waves in Structural Members Under Impact Loads (시간-주차수 신호처리를 이용한 구조용 부재에서의 충격하중에 의한 분석 파동의 해석)

  • Jeong, H.;Kwon, I.B.;Choi, M.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제20권6호
    • /
    • pp.481-489
    • /
    • 2000
  • A time-frequency analysis method was developed to analyze the dispersive waves caused by impact loads in structural members such as beams and plates. Stress waves generated by ball drop and pencil lead break were recorded by ultrasonic transducers and acoustic emission (AE) sensors. Wavelet transform (WT) using Gabor function was employed to analyze the dispersive waves in the time-frequency domain, and then to find the arrival time of the waves as a function of frequency. The measured group velocities in the beam and the plate were compared with the predictions based on the Timoshenko beam theory and Rayleigh-Lamb frequency equations, respectively. The agreements were found to be very good.

  • PDF

Stress Distribution of a Crane Hook by Photoelasticty Using 4-step Phase Shifting Method and finite Element Method (광탄성 4단계 위상 이동법과 유한요소법에 의한 크레인 훅의 응력분포 비교)

  • Baek, Tae-Hyun;Kim, Whan;Lee, Chun-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제24권1호
    • /
    • pp.38-44
    • /
    • 2004
  • An experimental study for a crane hook was performed to investigate the stress distribution along a certain line where the maximum and minimum stresses to be developed. On this line, the isoclinic fringe and/or principal stress direction is constant. The crane hook was modeled into a 2-dimensional plate made of urethane rubber called 'Photoflex' The Photoflex is very sensitive to a load and has low photoelastic fringe constant. The Tardy compensation method with the fringe sharpening process and the 4-step phase shifting method, was used for the photoelastic technique. Experimental results by photoelasticity were compared with the calculated stresses from the simple curved beam theory and tile finite element analysis. Ail the results were close to each other.

Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panel

  • Lal, Achchhe;Saidane, Nitesh;Singh, B.N.
    • Smart Structures and Systems
    • /
    • 제9권6호
    • /
    • pp.505-534
    • /
    • 2012
  • The present work deals with second order statistics of post buckling response of piezoelectric laminated composite cylindrical shell panel subjected to hygro-thermo-electro-mechanical loading with random system properties. System parameters such as the material properties, thermal expansion coefficients and lamina plate thickness are assumed to be independent of the temperature and electric field and modeled as random variables. The piezoelectric material is used in the forms of layers surface bonded on the layers of laminated composite shell panel. The mathematical formulation is based on higher order shear deformation shell theory (HSDT) with von-Karman nonlinear kinematics. A efficient $C^0$ nonlinear finite element method based on direct iterative procedure in conjunction with a first order perturbation approach (FOPT) is developed for the implementation of the proposed problems in random environment and is employed to evaluate the second order statistics (mean and variance) of the post buckling load of piezoelectric laminated cylindrical shell panel. Typical numerical results are presented to examine the effect of various environmental conditions, amplitude ratios, electrical voltages, panel side to thickness ratios, aspect ratios, boundary conditions, curvature to side ratios, lamination schemes and types of loadings with random system properties. It is observed that the piezoelectric effect has a significant influence on the stochastic post buckling response of composite shell panel under various loading conditions and some new results are presented to demonstrate the applications of present work. The results obtained using the present solution approach is validated with those results available in the literature and also with independent Monte Carlo Simulation (MCS).

Analytical calculation method for the axial equivalent elastic modulus of laminated FRP pipes based on three-dimensional stress state

  • Chen, Li;Pan, Darong;Zhao, Qilin;Chen, Li;Chen, Liang;Xu, Wei
    • Structural Engineering and Mechanics
    • /
    • 제77권1호
    • /
    • pp.137-149
    • /
    • 2021
  • In engineering design, the axial equivalent elastic modulus of laminated FRP pipe was mostly calculated by the average elastic modulus method or the classical laminated plate theory method, which are based on relatively simplified assumptions, and may be not accurate enough sometimes. A new analytical calculation method for the axial equivalent elastic modulus of laminated FRP pipe was established based on three-dimensional stress state. By comparing the results calculated by this method with those by the above two traditional analytical methods and the finite element method, it is found that this method for the axial equivalent elastic modulus fits well not only for thin-walled pipes with orthotropic layers, but also for thick-walled pipes with arbitrary layers. Besides, the influence of the layer stacking on the axial equivalent elastic modulus was studied with this method. It is found that a proper content of circumferential layer is beneficial for improving the axial equivalent elastic modulus of the laminated FRP pipe with oblique layers, and then can reduce its material quantity under the premise that its axial stiffness remains unchanged. Finally, the meso-mechanical mechanism of this effect was analyzed. The improving effect of circumferential layer on the axial equivalent elastic modulus of the laminated FRP pipe with oblique layers is mainly because that, the circumferential fibers can restrain the rigid body rotations of the oblique fibers, which tend to cause the significant deformations of the pipe wall units and the relatively low axial equivalent elastic modulus of the pipe.

Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates

  • Esmaeilzadeh, Mostafa;Golmakani, Mohammad Esmaeil;Kadkhodayan, Mehran;Amoozgar, Mohammadreza;Bodaghi, Mahdi
    • Advances in nano research
    • /
    • 제10권2호
    • /
    • pp.151-163
    • /
    • 2021
  • The main target of this study is to investigate nonlinear transient responses of moving polymer nano-size plates fortified by means of Graphene Platelets (GPLs) and resting on a Winkler-Pasternak foundation under a transverse pressure force and a temperature variation. Two graphene spreading forms dispersed through the plate thickness are studied, and the Halpin-Tsai micro-mechanics model is used to obtain the effective Young's modulus. Furthermore, the rule of mixture is employed to calculate the effective mass density and Poisson's ratio. In accordance with the first order shear deformation and von Karman theory for nonlinear systems, the kinematic equations are derived, and then nonlocal strain gradient scheme is used to reflect the effects of nonlocal and strain gradient parameters on small-size objects. Afterwards, a combined approach, kinetic dynamic relaxation method accompanied by Newmark technique, is hired for solving the time-varying equation sets, and Fortran program is developed to generate the numerical results. The accuracy of the current model is verified by comparative studies with available results in the literature. Finally, a parametric study is carried out to explore the effects of GPL's weight fractions and dispersion patterns, edge conditions, softening and hardening factors, the temperature change, the velocity of moving nanoplate and elastic foundation stiffness on the dynamic response of the structure. The result illustrates that the effects of nonlocality and strain gradient parameters are more remarkable in the higher magnitudes of the nanoplate speed.

The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT

  • Tahir, Saeed I.;Tounsi, Abdelouahed;Chikh, Abdelbaki;Al-Osta, Mohammed A.;Al-Dulaijan, Salah U.;Al-Zahrani, Mesfer M.
    • Steel and Composite Structures
    • /
    • 제42권4호
    • /
    • pp.501-511
    • /
    • 2022
  • Earthquake Resistant Design Philosophy seeks (a) no damage, (b) no significant structural damage, and (c) significant structural damage but no collapse of normal buildings, under minor, moderate and severe levels of earthquake shaking, respectively. A procedure is proposed for seismic design of low-rise reinforced concrete special moment frame buildings, which is consistent with this philosophy; buildings are designed to be ductile through appropriate sizing and reinforcement detailing, such that they resist severe level of earthquake shaking without collapse. Nonlinear analyses of study buildings are used to determine quantitatively (a) ranges of design parameters required to assure the required deformability in normal buildings to resist the severe level of earthquake shaking, (b) four specific limit states that represent the start of different structural damage states, and (c) levels of minor and moderate earthquake shakings stated in the philosophy along with an extreme level of earthquake shaking associated with the structural damage state of no collapse. The four limits of structural damage states and the three levels of earthquake shaking identified are shown to be consistent with the performance-based design guidelines available in literature. Finally, nonlinear analyses results are used to confirm the efficacy of the proposed procedure.

On the effect of porosity on the shear correction factors of functionally graded porous beams

  • Ben Abdallah Medjdoubi;Mohammed Sid Ahmed Houari;Mohamed Sadoun;Aicha Bessaim;Ahmed Amine Daikh;Mohamed-Ouejdi Belarbi;Abdelhak Khechai;Aman Garg;Mofareh Hassan Ghazwani
    • Coupled systems mechanics
    • /
    • 제12권3호
    • /
    • pp.199-220
    • /
    • 2023
  • This article presents a new analytical model to study the effect of porosity on the shear correction factors (SCFs) of functionally graded porous beams (FGPB). For this analysis, uneven and logarithmic-uneven porosity functions are adopted to be distributed through the thickness of the FGP beams. Critical to the application of this theory is a determination of the correction factor, which appears as a coefficient in the expression for the transverse shear stress resultant; to compensate for the assumption that the shear strain is uniform through the depth of the cross-section. Using the energy equivalence principle, a general expression is derived from the static SCFs in FGPB. The resulting expression is consistent with the variationally derived results of Reissner's analysis when the latter are reduced from the two-dimensional case (plate) to the one-dimensional one (beam). A convenient algebraic form of the solution is presented and new study cases are given to illustrate the applicability of the present formulation. Numerical results are presented to illustrate the effect of the porosity distribution on the (SCFs) for various FGPBs. Further, the law of changing the mechanical properties of FG beams without porosity and the SCFare numerically validated by comparison with some available results.

An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates

  • Abdelouahed Tounsi;Saeed I. Tahir;Mohammed A. Al-Osta;Trinh Do-Van;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.61-74
    • /
    • 2023
  • This article investigates the wave propagation analysis of the imperfect functionally graded (FG) sandwich plates based on a novel simple four-variable integral quasi-3D higher-order shear deformation theory (HSDT). The thickness stretching effect is considered in the transverse displacement component. The presented formulation ensures a parabolic variation of the transverse shear stresses with zero-stresses at the top and the bottom surfaces without requiring any shear correction factors. The studied sandwich plates can be used in several sectors as areas of aircraft, construction, naval/marine, aerospace and wind energy systems, the sandwich structure is composed from three layers (two FG face sheets and isotropic core). The material properties in the FG faces sheet are computed according to a modified power law function with considering the porosity which may appear during the manufacturing process in the form of micro-voids in the layer body. The Hamilton principle is utilized to determine the four governing differential equations for wave propagation in FG plates which is reduced in terms of computation time and cost compared to the other conventional quasi-3D models. An eigenvalue equation is formulated for the analytical solution using a generalized displacements' solution form for wave propagation. The effects of porosity, temperature, moisture concentration, core thickness, and the material exponent on the plates' dispersion relations are examined by considering the thickness stretching influence.

Re-review of the Structure of the Jeongsa-Kisun (Senior Envoy Ship) in the Joseon Dynasty from the Perspective of Professional Shipbuilding Engineering (조선통신사 정사 기선(騎船) 구조의 조선기술 연구)

  • HONG Sunjae
    • Korean Journal of Heritage: History & Science
    • /
    • 제55권4호
    • /
    • pp.242-275
    • /
    • 2022
  • This study tries to reveal the structure of the "Kisun"(senior envoy ship) taken by senior envoys for the 10th to 12th visits to Japan from the perspective of professional shipbuilding engineering focusing on the theory of the ship in the travel logs of royal envoys to Japan (Sahaengrok) written by Joseon Tongsinsa that includes 12 visits to Japan for about 200 years from 1607 to 1811. The results of the study showed that the size of Kisun for the 10th to 12th envoy visits was 19 Pa (把) and a half in length and 6 Pa (把) and 2 Cheok (尺) in width. The height of the Sampan was found to be 2 Pa (把) and 1 Cheok (尺) based on records in Gyemisusarok and Jeungjeonggyorinji. The structure of Kisun was different for each visit but, it was found that Kisun was mainly composed of a main deck, bow (bow plate, stem plate), stern (stern plate), Sampan, Meonge (support), Garyong (support), Sinbang, Gungji, deck, two masts and sail, Gurejjak (mast support), Panok, stern Panok, Taru, dodger, anchor reel, stairs, rail, rudder, oar, and anchor. In addition, wood and iron nails were used together for connection. It was also found that the sail was made of herbage and cotton. This study found that Kisun, which was operated for the 10th and 12th envoy visits, was big in terms of length and height among the Joseon Tongsinsa fleet to show the authority and dignity of Joseon and that it had passages outside on the sides of the vessel and paddles were located between the sides and Panok structure and rails were installed on four sides on the Panok, improving stability and linear beauty. The walls of Panok were decorated with the royal Dancheong pattern and fancy murals. In addition, it was found that they wished for a safe voyage by drawing a demon face on the bow. Therefore, it was revealed that Kisun, which was taken by envoys as recorded in travel logs, was made by the state and equipped with structures and functions that enabled international voyages.

Crop Injury (Growth Inhibition) Induced by Herbicides and Remedy to Reduce It (제초제(除草劑) 약해발생(藥害發生) 양상(樣相)과 경감대책(輕減對策))

  • Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • 제12권3호
    • /
    • pp.261-270
    • /
    • 1992
  • Many herbicides that are applied at the soil before weed emergence inhibit plant growth soon after weed germination occurs. Plant growth has been known as an irreversible increase in size as a result of the processes of cell divison and cell enlargement. Herbicides can influence primary growth in which most new plant tissues emerges from meristmatic region by affecting either or both of these processes. Herbicides which have sites of action during interphase($G_1$, S, $G_2$) of cell cycle and cause a subsequent reduction in the observed frequency of mitotic figures can be classified as an inhibitor of mitotic entry. Those herbicides that affect the mitotic sequence(mitosis) by influencing the development of the spindle apparatus or by influencing new cell plate formation should be classified as causing disruption of the mitotic sequence. Sulfonylureas, imidazolinones, chloroacetamides and some others inhibit plant growth by inhibiting the entry of cell into mitosis. The carbamate herbicides asulam, carbetamide, chlorpropham and propham etc. reported to disrupt the mitotic sequence, especially affecting on spindle function, and the dinitroaniline herbicides trifluralin, nitralin, pendimethalin, dinitramine and oryzalin etc. reported to disrupt the mitotic sequence, particularly causing disappearence of microtubles from treated cells due to inhibition of polymerization process. An inhibition of cell enlargement can be made by membrane demage, metabolic changes within cells, or changes in processes necessary for cell yielding. Several herbicides such as diallate, triallate, alachlor, metolachlor and EPTC etc. reported to inhibit cell enlargement, while 2, 4-D has been known to disrupt cell enlargement. One potential danger inherent in the use of soil acting herbicides is that build-up of residues could occur from year to year. In practice, the sort of build-up that would be disastrous is unikely to occur for substances applied at the correct soil concentration. Crop injury caused by soil applied herbicides can be minimized by (1) following the guidance of safe use of herbicides, particularly correct dose at correct time in right crop, (2) by use of safeners which protect crops against injury without protecting any weed ; interactions between herbicides and safeners(antagonists) at target sites do occur probably from the following mechanisms (1) competition for binding site, (2) circumvention of the target site, and (3) compensation of target site, and another mechanism of safener action can be explained by enhancement of glutathione and glutathione related enzyme activity as shown in the protection of rice from pretilachlor injury by safener fenclorim, (3) development of herbicide resistant crops ; development of herbicide-resistant weed biotypes can be explained by either gene pool theory or selection theory which are two most accepted explanations, and on this basis it is likely to develop herbicide-resistant crops of commercial use. Carry-over problems do occur following repeated use of the same herbicide in an extended period of monocropping, and by errors in initial application which lead to accidental and irregular overdosing, and by climatic influence on rates of loss. These problems are usually related to the marked sensitivity of the particular crops to the specific herbicide residues, e.g. wheat/pronamide, barley/napropamid, sugarbeet/ chlorsulfuron, quinclorac/tomato. Relatively-short-residual product, succeeding culture of insensitive crop to specific herbicide, and greater reliance on postemergence herbicide treatments should be alternatives for farmer practices to prevent these problems.

  • PDF