Acknowledgement
Supports from Natural Science Foundation of China (51978166), and Construction System Science and Technology Guidance Project of Jiangsu (2017ZD131, 2017ZD132, 2018ZD182) are gratefully acknowledged.
References
- Bai, Y. and Yang, X. (2013), "Novel joint for assembly of all-composite space truss structures: Conceptual design and preliminary study", J. Compos. Construct., 17(1), 130-138. http://doi.org/10.1061/(ASCE)CC.1943-5614.0000304.
- Bois, C., Pilato, A., Wahl, J.C. and Perry, N. (2013), "Proposal for a smart pressurised ring test to study thick composite produced by lament winding", Compos. Part B Eng., 53(10), 382-390. http://doi.org/10.1016/j.compositesb.2013.06.001.
- Chen, L., Zhao, Q. and Jiang, K. (2011), "Experimental and theoretical research on the compression performance of CFRP sheet confined GFRP short pole", Struct. Eng. Mech., 40, 215-231. http://doi.org/10.12989/sem.2011.40.2.215.
- Darwin, D., Dolan, C.W. and Nilson, A.H. (2016), Design of Concrete Structures, McGraw Hill Education, New York, NY, USA.
- Deo, R., Benner, H., Vincent, D., Olason, E. and Harrison, R. (2010), "Design and Manufacture of Structurally Efficient Tapered Struts (SETS)", CR-2010-216699; NASA, USA.
- Editorial-Committee (2002), China Aeronautical Materials Handbook: Volume 6 (Composite and Adhesive), China Standard Press, Beijing, China.
- El-Sheikh, A. (1998), "Design of space truss structures", Struct. Eng. Mech., 6(2), 185-200. http://doi.org/10.12989/sem.1998.6.2.185.
- Feng, P., Hu, L., Qian, P. and Ye, L. (2016), "Compressive bearing capacity of CFRP-aluminum alloy hybrid tubes", Compos. Struct., 140, 749-757. http://doi.org/10.1016/j.compstruct.2016.01.041.
- Goodman, J.W. and Gliksman, J.A. (1969), Structural Evaluation of Long Boron Composite Columns, ASTM International, West Conshohocken, PA, USA.
- Hewson, P. (1978), "Buckling of pultruded glass fibre-reinforced channel sections", Compos., 9(1), 56-60. http://doi.org/10.1016/0010-4361(78)90520-7.
- HYER, M.W. (2009), Stress Analysis of Fiber-Reinforced Composite Materials, Destech Publications, Lancaster, Pennsylvania, USA.
- Jegley, D.C., Wu, K.C., Phelps, J.E., Mckenney, M.J. and Oremon, L. (2011), "Structural efficiency of composite struts for aerospace applications", J. Spacecraft Rockets, 49(5), 915-924. http://doi.org/10.2514/1.60053.
- Kassapoglou, C. (2010), Review of Classical Laminated Plate Theory, John Wiley and Sons, Ltd., Chichester, West Sussex, United Kingdom.
- Kaveh, A. and Bijari, S. (2018), "Simultaneous analysis, design and optimization of trusses via force method", Struct. Eng. Mech., 65(3), 233-241. http://doi.org/10.12989/sem.2018.65.3.233.
- Li, F., Zhao, Q., Chen, L. and Shao, G. (2014), "Experimental and Theoretical Research on the Compression Performance of CFRP Sheet Confined GFRP Short Pipe", The Scientific World Journal, 2014, 109692. http://doi.org/10.1155/2014/109692.
- Lim, T.C. (2001), "An integrated mechanics-of-materials model for the elastic stiffness of composites", Adv. Compos. Lett., 10(2), 53-59. http://doi.org/10.1177/096369350101000201.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of FGM beams", Struct. Eng. Mech., 69(4), 427-437. http://doi.org/10.12989/sem.2019.69.4.427.
- Madenci, E. and Ozutok, A. (2017), "Variational Approximate and Mixed-Finite Element Solution for Static Analysis of Laminated Composite Plates", Solid State Phenomena, 267, 35-39. http://doi.org/10.4028/www.scientific.net/SSP.267.35.
- Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. http://doi.org/10.12989/sem.2020.73.1.097.
- Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. http://doi.org/10.1016/j.compstruct.2020.112162.
- Ozutok, A. and Madenci, E. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. http://doi.org/10.1016/j.ijmecsci.2017.06.013.
- Rafiee, R. (2013), "Experimental and theoretical investigations on the failure of filament wound GRP pipes", Compos. Part B Eng., 45(1), 257-267. http://doi.org/10.1016/j.compositesb.2012.04.009.
- Rafiee, R. and Abbasi, F. (2020), "Numerical and Experimental Analyses of the Hoop Tensile Strength of Filament-Wound Composite Tubes", Mech. Compos. Mater., 56(4), 423-436. http://doi.org/10.1007/s11029-020-09894-2.
- Rafiee, R. and Elasmi, F. (2017), "Theoretical modeling of fatigue phenomenon in composite pipes", Compos. Struct., 161, 256-263. http://doi.org/10.1016/j.compstruct.2016.11.054.
- Rafiee, R. and Ghorbanhosseini, A. (2020), "Analyzing the longterm creep behavior of composite pipes: Developing an alternative scenario of short-term multi-stage loading test", Compos. Struct., 254, 112868. http://doi.org/10.1016/j.compstruct.2020.112868.
- Rafiee, R. and Habibagahi, M.R. (2018), "Evaluating mechanical performance of GFRP pipes subjected to transverse loading", Thin Wall. Struct., 131, 347-359. http://doi.org/10.1016/j.tws.2018.06.037.
- Rafiee, R. and Sharifi, P. (2019), "Stochastic failure analysis of composite pipes subjected to random excitation", Construct. Build. Mater., 224, 950-961. http://doi.org/10.1016/j.conbuildmat.2019.07.107.
- Takahashi, K., Ban, K. and Sakai, T. (1984), "Mechanical properties of FRP-FW pipes", Compos. Struct., 2(2), 91-104. http://doi.org/10.1016/0263-8223(84)90023-0.
- Topal, U. (2017), "Buckling load optimization of laminated composite stepped columns", Struct. Eng. Mech., 62(1), http://doi.org/10.12989/sem.2017.62.1.107.
- Tsai, S.W. and Hahn, T.H. (1980), Introduction to Composite Materials, Technomic Publishing Company, Lancaster, Pennsylvania, USA.
- Yang, X., Bai, Y. and Ding, F. (2015), "Structural performance of a large-scale space frame assembled using pultruded GFRP composites", Compos. Struct., 133, 986-996. http://doi.org/10.1016/j.compstruct.2015.07.120.
- Yu, T., Zhang, S., Huang, L. and Chan, C. (2017), "Compressive behavior of hybrid double-skin tubular columns with a large rupture strain FRP tube", Compos. Struct., 171, 10-18. http://doi.org/10.1016/j.compstruct.2017.03.013.
- Yu, T., Zhao, H., Ren, T. and Remennikov, A. (2019), "Novel hybrid FRP tubular columns with large deformation capacity: Concept and behaviour", Compos. Struct., 212, 500-512. http://doi.org/10.1016/j.compstruct.2019.01.055.