• Title/Summary/Keyword: Plate Modeling

Search Result 522, Processing Time 0.024 seconds

Predictive model of fatigue crack detection in thick bridge steel structures with piezoelectric wafer active sensors

  • Gresil, M.;Yu, L.;Shen, Y.;Giurgiutiu, V.
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.97-119
    • /
    • 2013
  • This paper presents numerical and experimental results on the use of guided waves for structural health monitoring (SHM) of crack growth during a fatigue test in a thick steel plate used for civil engineering application. Numerical simulation, analytical modeling, and experimental tests are used to prove that piezoelectric wafer active sensor (PWAS) can perform active SHM using guided wave pitch-catch method and passive SHM using acoustic emission (AE). AE simulation was performed with the multi-physic FEM (MP-FEM) approach. The MP-FEM approach permits that the output variables to be expressed directly in electric terms while the two-ways electromechanical conversion is done internally in the MP-FEM formulation. The AE event was simulated as a pulse of defined duration and amplitude. The electrical signal measured at a PWAS receiver was simulated. Experimental tests were performed with PWAS transducers acting as passive receivers of AE signals. An AE source was simulated using 0.5-mm pencil lead breaks. The PWAS transducers were able to pick up AE signal with good strength. Subsequently, PWAS transducers and traditional AE transducer were applied to a 12.7-mm CT specimen subjected to accelerated fatigue testing. Active sensing in pitch catch mode on the CT specimen was applied between the PWAS transducers pairs. Damage indexes were calculated and correlated with actual crack growth. The paper finishes with conclusions and suggestions for further work.

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

Approximately Coupled Method of Finite Element Method and Boundary Element Method for Two-Dimensional Elasto-static Problem (이차원 탄성 정적 문제를 위한 유한요소법과 경계요소법의 근사 결합 방법)

  • Song, Myung-Kwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.3
    • /
    • pp.11-20
    • /
    • 2021
  • In this paper, the approximately coupled method of finite element method and boundary element method to obtain efficient and accurate analysis results is proposed for a two-dimensional elasto-static problem with a geometrically abruptly changing part. As the finite element of a two-dimensional problem, three-node and four-node plane stress element is applied, and as the boundary element of a two-dimensional problem, three-node boundary element is applied. In the modeling stage, firstly, an entire analysis target object is modeled as finite elements, and then a geometrically abruptly changing part is modeled as boundary elements. The boundary element is defined using the nodes defined for modeling finite elements. In the analysis stage, finite element analysis is firstly performed on a entire analysis target object, and boundary element analysis is automatically performed afterwards. As for the boundary conditions at boundary element analysis, displacement conditions and stress conditions, which are the results of finite element analysis, are applied. As a numerical example, the analysis results for a two-dimensional elasto-static problem, a plate with a crack, are presented and investigated.

A Study on the Strength Evaluation Method of Plate Structures with Penetration-holes (관통구를 갖는 판구조물의 강도평가 방법에 관한 연구)

  • Kim, Ul-Nyeon;Jang, Jun-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.476-484
    • /
    • 2017
  • The purpose of this paper is to verify the structural integrity of a region with numerous penetration-holes in offshore structures such as semi-submersible rig and FPSO. In order to effectively check the yielding and buckling strength of plate members with penetration-holes, a screening analysis program was developed with the FE analysis tool to generate fine meshed model using the theoretical and analysis methods. When a hole is appeared in the plate structure members, the flow of stress is altered such that concentrations of stress form near the hole. Stress concentrations are of concern during both preliminary and detail design and need to be addressed from the perspectives of strength. To configure the geometrical shape, very fine meshed FE analysis is needed as the most accurate method. However, this method is practically impossible to apply for the strength verifications for all perforated plates. In this paper, screening analysis method was introduced to reduce analysis tasks prior to detailed FE analysis. This method is applied to not only the peak stress calculation combined stress concentration factor with nominal stress but also nominal equivalent stress calculation considering cutout effects. The areas investigated by very fine meshed analysis were to be chosen through screening analysis without any reinforcements for penetration-holes. If screening analysis results did not satisfy the acceptance criteria, direct FE analysis method as the 2nd step approach were applied with one of the coarse meshed model considering hole or with the very fine meshed model considering the hole shape and size. In order to effectively perform the local fine meshed analysis, automatic model generating program was developed based on the MSC/PATRAN which is pre-post FE analysis program. Buckling strength was also evaluated by Common Structure Rule (CSR) adopted by IACS as the stress obtained from very fine meshed FE analysis. Due to development of the screening analysis program and automatic FE modeling program, it was able to reduce the design periods and structural analysis costs.

A Study on the Fatigue Strength of the Welded Joints in Steel Structures(I) (강구조물(鋼構造物)의 용접연결부(鎔接連結部)의 피로강도(疲勞强度)에 관한 연구(研究)(I))

  • Park, Je Seon;Chang, Dong Il;Chung, Yeong Wha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.161-175
    • /
    • 1985
  • The simplified method drawing the S-N curves in welding joints of the cover plates, the transverse stiffners and the gusset plates of the plate girders by calculation and its computer program without the direct fatigue tests, was established. And the method was applied to the Young- Dong Great Bridge, the 3 th Han River Bridge and the Kang Chon Bridge. Before this, SS 41, SS 50, SWS 50 and SWS 58 were selected, then the compact tension specimens were made by the use of these materials, the things welded by these materials transversely and the ones longitudinally to the crack propagation direction. The fatigue tests were performed by the use of these 'specimens, and the values of material constants c and m were obtained. By these results the followings were obtained. It was showed that the fatigue: strength in the case of the cover plates was much lower than in the case of other two cases. It was showed that, in the case of the cover plates with the cover plates thicker the fatigue strength was lower, but besides this the fatigue strength was not much influenced by the size of specimens. It was showed that in the difference from this the fatigue strength was sensitively influenced by the values of c and m. It was showed that in accordance with the lower values of c and m the fatigue strength was fairly higher, in accordance with the lower values of m the gradient of the S-N curves was abrupter. It was considered that if such data were accumulated continuously, in the near future the basic pattern used availably in providing the indicater of the fatigue design of the plate girders, and presuming the life-proof of the existing plate girders.

  • PDF

Propagation of Structural Waves along Waveguides with Non-Uniformities Using Wavenumber Domain Finite Elements (국부적 불연속을 갖는 도파관을 따라 전파되는 파동에 대한 파수 영역 유한 요소 해석)

  • Ryue, Jungsoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.191-199
    • /
    • 2014
  • Wave reflection and transmission characteristics in waveguides are an important issue in many engineering applications. A combined spectral element and finite element (SE/FE) method is used to investigate the effects of local non-uniformities but limited at relatively low frequencies because the SE is formulated by using a beam theory. For higher frequency applications, a method named a combined spectral super element and finite element (SSE/FE) method was presented recently, replacing spectral elements with spectral super elements. This SSE/FE approach requires a long computing time due to the coupling of SSE and FE matrices. If a local non-uniformity has a uniform cross-section along its short length, the FE part could be further replaced by SSE, which improves performance of the combined SSE/FE method in terms of the modeling effort and computing time. In this paper SSEs are combined to investigate the characteristics of waves propagating along waveguides possessing geometric non-uniformities. Two models are regarded: a rail with a local defect and a periodically ribbed plate. In the case of the rail example, firstly, the results predicted by a combined SSE/FE method are compared with those from the combined SSEs in order to justify that the combined SSEs work properly. Then the SSEs are applied to a ribbed plate which has periodically repeated non-uniformities along its length. For the ribbed plate, the propagation characteristics are investigated in terms of the propagation constant.

Numerical Prediction of Ultimate Strength of RC Beams and Slabs with a Patch by p-Version Nonlinear Finite Element Modeling and Experimental Verification (p-Version 비선형 유한요소모델링과 실험적 검증에 의한 팻취 보강된 RC보와 슬래브의 극한강도 산정)

  • Ahn Jae-Seok;Park Jin-Hwan;Woo Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.375-387
    • /
    • 2004
  • A new finite element model will be presented to analyze the nonlinear behavior of RC beams and slabs strengthened by a patch repair. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on hardening rule, crushing condition, plate-end debonding strength model and so on. The Gauss-Lobatto numerical quadrature is applied to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version nonlinear finite element model is demonstrated through the load-deflection curves, the ultimate loads, and the failure modes of RC beams or slabs bonded with steel plates or FRP plates compared with available result of experiment and other numerical methods.

Virtual Target Overlay Technique by Matching 3D Satellite Image and Sensor Image (3차원 위성영상과 센서영상의 정합에 의한 가상표적 Overlay 기법)

  • Cha, Jeong-Hee;Jang, Hyo-Jong;Park, Yong-Woon;Kim, Gye-Young;Choi, Hyung-Il
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1259-1268
    • /
    • 2004
  • To organize training in limited training area for an actuai combat, realistic training simulation plugged in by various battle conditions is essential. In this paper, we propose a virtual target overlay technique which does not use a virtual image, but Projects a virtual target on ground-based CCD image by appointed scenario for a realistic training simulation. In the proposed method, we create a realistic 3D model (for an instructor) by using high resolution Geographic Tag Image File Format(GeoTIFF) satellite image and Digital Terrain Elevation Data (DTED), and extract the road area from a given CCD image (for both an instructor and a trainee). Satellite images and ground-based sensor images have many differences in observation position, resolution, and scale, thus yielding many difficulties in feature-based matching. Hence, we propose a moving synchronization technique that projects the target on the sensor image according to the marked moving path on 3D satellite image by applying Thin-Plate Spline(TPS) interpolation function, which is an image warping function, on the two given sets of corresponding control point pair. To show the experimental result of the proposed method, we employed two Pentium4 1.8MHz personal computer systems equipped with 512MBs of RAM, and the satellite and sensor images of Daejoen area are also been utilized. The experimental result revealed the effective-ness of proposed algorithm.

Elastic Wave Propagation in Nuclear Power Plant Containment Building Walls Considering Liner Plate and Concrete Cavity (라이너 플레이트 및 콘크리트 공동을 고려한 원전 격납건물 벽체의 탄성파 전파 해석)

  • Kim, Eunyoung;Kim, Boyoung;Kang, Jun Won;Lee, Hongpyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.167-174
    • /
    • 2021
  • Recent investigation into the integrity of nuclear containment buildings has highlighted the importance of developing an elaborate diagnostic method to evaluate the distribution and size of cavities inside concrete walls. As part of developing such a method, this paper presents a finite element approach to modeling elastic waves propagating in the containment building walls of a nuclear power plant. We introduce a perfectly matched layer (PML) wave-absorbing boundary to limit the large-scale nuclear containment wall to the region of interest. The formulation results in a semi-discrete form with symmetric damping and stiffness matrices. The transient elastic wave equations for a mixed unsplit-field PML were solved for displacement and stresses in the time domain. Numerical results show that the sensitivity of displacement, velocity, acceleration, and stresses is large depending on the size and location of the cavity. The dynamic response of the wall slightly differs depending on the existence of the containment liner plate. The results of this study can be applied to a full-waveform inversion approach for characterizing cavities inside a containment wall.

Experimental Study on Deformation Resistance Capacity of SY Permanent Steel Form for RC Beam and Girder under Casting Concrete (SY 비탈형 보 거푸집의 콘크리트 타설시 변형저항성능에 관한 실험적 연구)

  • Bae, Kyu-Woong;Shin, Sang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.605-615
    • /
    • 2021
  • Recently, to shorten construction periods and reduce labor costs, the need for a corrugated beam form in the RC structure is being emphasized. The purpose of this study is to evaluate the deformation performance of SY Beam, a newly developed corrugated beam form work, during concrete casting. The standard cross-sectional shape of SY Beam was determined by modeling the deck structure of various thicknesses using the MIDAS GEN program. As a result, the cross-sectional dimensions of the SY Beam were determined to be 400mm and 450mm in width and height, respectively. A total of three SY Beam specimens were fabricated using steel plate thicknesses of 0.8, 1.0, and 1.2mm. The load conditions applied during casting concrete at the actual site are reflected. The vertical and horizontal displacements of the SY beam were measured during concrete casting. As a result, the vertical displacement showed a tendency to decrease as the thickness increased. Considering both vertical and horizontal displacement, the case with steel plate thickness of 1.2mm is the safest and most immediately applicable to the field. In the future, to secure manufacturability, constructability, and economics, the optimum steel plate thickness should be derived, and additional analysis and experimental studies for 1.05, 1.1, and 1.15mm are required.