• 제목/요약/키워드: Plate Load Test

검색결과 586건 처리시간 0.026초

Ultimate strength behavior of steel plate-concrete composite slabs: An experimental and theoretical study

  • Wu, Lili;Wang, Hui;Lin, Zhibin
    • Steel and Composite Structures
    • /
    • 제37권6호
    • /
    • pp.741-759
    • /
    • 2020
  • Steel plate-concrete composite slabs provide attractive features, such as more effective loading transfer, and more cost-effective stay-in-place forms, thereby enabling engineers to design more high-performance light structures. Although significant studies in the literatures have been directed toward designing and implementing the steel plate-concrete composite beams, there are limited data available for understanding of the composite slabs. To fill this gap, nine the composite slabs with different variables in this study were tested to unveil the impacts of the critical factors on the ultimate strength behavior. The key information of the findings included sample failure modes, crack pattern, and ultimate strength behavior of the composite slabs under either four-point or three-point loading. Test results showed that the failure modes varied from delamination to shear failures under different design factors. Particularly, the shear stud spacing and thicknesses of the concrete slabs significantly affected their ultimate load-carrying capacities. Moreover, an analytical model of the composite slabs was derived for determining their ultimate load-carrying capacity and was well verified by the experimental data. Further extensive parametric study using the proposed analytical methods was conducted for a more comprehensive investigation of those critical factors in their performance. These findings are expected to help engineers to better understand the structural behavior of the steel plate-concrete composite slabs and to ensure reliability of design and performance throughout their service life.

인발력을 받는 Kaolinite 지반의 장기변위 특성에 관한 연구 (A Study on the Characteristics of Creep in Kaolinite Soil Subjected to Uplift Capacity)

  • 이준대;최기봉
    • 한국안전학회지
    • /
    • 제14권2호
    • /
    • pp.116-121
    • /
    • 1999
  • When plate anchors are embedded in soft clay, they may undergo a deformation under the pressure of sustained load. The critical depth at which the transition from a shallow to a deep anchor takes place depends on the properties of soil. Laboratory model tests were performed for the short-term net ultimate uplift capacity of a circular anchors with respect to various embedment depths and moisture content in saturated kaolinite. The tests have been conducted with the anchor at two different moisture contents. Based on the model test results, empirical relationships between the net load, rate of strain, and time have been developed. In creep tests of kaolinite for load versus ultimate uplift capacity, the displacement of plate anchors rapidly increases during the primary stage but thereafter becomes constant over a period of time.

  • PDF

Cyclic behavior of extended end-plate connections with European steel shapes

  • Akgonen, Aliriza I.;Yorgun, Cavidan;Vatansever, Cuneyt
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1185-1201
    • /
    • 2015
  • The aim of this experimental research is to investigate the conformity of the four-bolt unstiffened moment end-plate connections consisting of European steel sections which do not meet the limitations specified for beam flange width and overall beam depth in ANSI/AISC 358-10 to the requirements of seismic application. However, the connections are satisfactory with the limitations required by Turkish Earthquake Code. For this purpose, four test specimens were designed and cyclic load was applied to three specimens while one was tested under monotonic loading to provide data for the calibration of the analytical models. The moment-rotation hysteresis loops and the failure modes for all test specimens are presented. A full three-dimensional finite element model is also developed for each test specimen for use to predict their behavior and to provide a tool for generating subsequent extensive parametric studies. The test results show that all specimens performed well in terms of rotation capacity and strength. Finite element models are found to be capable of approximating the cyclic behavior of the extended end-plate connection specimens.

Tensile capacity of mortar-filled rectangular tube with various connection details

  • Kim, Chul-Goo;Kang, Su-Min;Eom, Tae-Sung;Baek, Jang-Woon
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.339-351
    • /
    • 2022
  • A mortar-filled rectangular hollow structural section (RHS) can increase a structural section property as well as a compressive buckling capacity of a RHS member. In this study, the tensile performance of newly developed mortar-filled RHS members was experimentally evaluated with various connection details. The major test parameters were the type of end connections, the thickness of cap plates and shear plates, the use of stud bolts, and penetrating bars. The test results showed that the welded T-end connection experienced a brittle weld fracture at the welded connection, whereas the tensile performance of the T-end connection was improved by additional stud bolts inserted into the mortar within the RHS tube. For the end connection using shear plates and penetrating stud bolts, ductile behavior of the RHS tube was achieved after yielding. The penetrating bars increased load carrying capacity of the RHS. Based on the analysis of the load transfer mechanism, the current design code and test results were compared to evaluate the tensile capacity of the RHS tube according to the connection details. Design considerations for the connections of the mortar-filled RHS tubes were also recommended.

프리스트레스트 콘크리트 부재용 재긴장 정착구 하중전달시험 (Load Transfer Test for Re-tensioning Post-Tension Kit for Prestressed Concrete)

  • 허재훈;노병철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권5호
    • /
    • pp.8-14
    • /
    • 2021
  • 포스트텐션 프리스트레스트 콘크리트 부재는 즉시 손실 이외에도 크리프, 건조수축 및 릴렉세이션과 같은 시간적 손실이 발생한다. 아울러 상부 슬래브 또는 포장 등의 교체 등에 의한 고정하중 변동으로 인하여 부재 상하부의 응력이 변화하게 된다. 이러한 응력의 변화는 부재의 안전성에 영향을 줄 경우가 있으며, 이 경우 프리스트레스 힘의 조절이 필요하다. 따라서 이 연구에서는 나사를 적용한 새로운 유형의 재긴장 포스트텐션 정착구를 제안하고, EAD160004 및 KCI-PS101에 규정된 하중전달시험을 통하여 하중에 대한 안전성과 변형률에 대한 안정성을 만족함을 구명하였다.

PBT에 의한 직접기초의 안정성 평가 (Stability Evaluation of Shallow Foundation by Plate Bearing Test)

  • 기완서;주승완;김선학
    • 지질공학
    • /
    • 제15권4호
    • /
    • pp.423-433
    • /
    • 2005
  • 직접기초의 설계 및 안정성 평가를 위해 편마암 풍화토로 구성된 A, B 대상현장에서 평판재하시험을 실시하여 이론적, 경험적 지지력 공식 및 여러 침하량산정 공식에 대한 비교$\cdot$분석을 실시하였다. 또한, 편마암의 풍화토지 반에 실시되어진 평판재하시험의 결과를 이용한 효율적인 안정성 평가방법을 고찰하였다. 그 결과 허용 지지력은 Terzaghi의 이론공식이 평판재하시험 결과에 비교하여 과대하게 산정되어지는 것으로 나타났으며, 직접 기초 설계시 국내에서 가장 널리 이용되고 있는 Terzaghi-Peck 방법이 침하량이 크게 나타나 안정적인 설계를 하는데 효과적으로 나타났다. 또한, 편마암의 풍화토 지반에 실시된 평판재하시험결과 하중-침하 곡선에서 얻어진 지지력으로 안정성을 검토하는 경우 침하량 관점 보다 더 안전측으로 평가되어 짐을 알 수 있었다.

초고강도 ($\acute{f}_{C91}$= 950kg/$\textrm{cm}^2$) P.C Bearing Plate 개발에 관한 연구 (A Study on the Development of a Ultra-Strength Precast Concrete Bearing Concrete Bearing Plate)

  • 소현창;정병욱;김재우;문성규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.643-648
    • /
    • 1997
  • P.C Bearing Plate method, corresponding to the existing steel plate build-up method, is developed by the very first in domestic and is applied to the foundation in the HYUNDAI building at Kang-Nam. P. C Bearing Plate produced in ourself P.C plant can stand against vertical load of 7,000ton obtaining allowable force of soil. It is possible to minmize cost expediting, do site assembling and omit unnecessary excavation work by plant prefabrication of foundation member. The purpose of this paper is to study the optimum mixing design of Ultra-high strength concrete ($\acute{f}_{C91}$= 950kg/$\textrm{cm}^2$), crack control through measuring the heat of hydration, mock up test for the optimum curing method. As mentioned above, developing the Ultra-high strength Precast Concrete Bearing Plate set up successfully in the site foundation work of the HYUNDAI Building at Kang-Nam.

  • PDF

플랫 플레이트 슬래브 해석을 위한 강성감소계수 제안 (Stiffness Reduction Factor for Flat Plate Slabs)

  • 박영미;한상환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.337-340
    • /
    • 2006
  • The purpose of this study is to propose the stiffness reduction factor for flat plate slabs under lateral loads. Current design code (e.g., ACI 318-05) requires considering the effects of cracks for calculating slab stiffness under lateral loads. This study collected the test results of 20 interior slab-column connections, from which stiffness reduction in each test was estimated with respect to the ratio of applied moment to cracking moment ($M_a/M_{cr}$). Based on collected data, this study proposed equations for calculating stiffness reduction with respect to $M_a/M_{cr}$. To verify the proposed equations, this study conducted the experimental test of interior slab-column connections under quasi-static cyclic loading. From the test, load-deformation curve is compared to that obtained from effective beam width method with the proposed equation for the stiffness reduction. It is shown that the effective beam width method with the proposed equation for stiffness reduction predicts accurately the test results.

  • PDF

중공단면 복합소재 교량 바닥판의 시험을 통한 구조적 특성 분석 (Experimental Study on the Composite Bridge Deck of Hollow Section)

  • 이성우;김병석;홍기증
    • 한국전산구조공학회논문집
    • /
    • 제19권4호
    • /
    • pp.325-335
    • /
    • 2006
  • 본 논문에서는 설계와 해석을 거쳐 인발성형으로 제작된 중공단면 복합소재 교량 바닥판에 대해 휨 성능시험, 바닥판-거더 연결부시험, 바닥판-방호벽 연결부시험 등을 통해 구조적 특성을 분석하였다. 휨시험체에 지간 중앙에 변위계와 상 하부판의 주요부에 변형률계를 부착하여 파괴하중 재하시까지 거동을 계측하고 그 결과를 분석하였다. 휨시험체에 대한 유한요소해석도 실시하여 시험결과와 비교분석하였으며, 휨에 대한 극한 내하력을 추정하였다. 또한, 시범시공된 복합소재 바닥판 플레이트 거더 교량에 대한 현장 재하시험결과와 현장적용사례를 기술하였다.

강판접착으로 보강된 철근콘크리트 기둥의 내력 및 변형에 관한 실험적 연구 (An Experimental Study on the Strength and Deformation of Reinforced Concrete Columns Strengthed with Epoxy-Bonded Steel Plate)

  • 김진배;이시우;장화균;조철호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권1호
    • /
    • pp.147-155
    • /
    • 1999
  • The purpose of this study is to investigate the strength and ductility of reinforced concrete columns subject to axial load experimentally for several variables of reinforcements and propose foundational research date for reinforcement design of column. In the test a total of eleven specimens, which are all $20{\times}20{\times}60cm$ in size and differently reinforced with steel plate, has been used. The main variables of reinforcement considered in the test are the width of steel plate, the thickness of steel plate. Based on the test results, the effect of the main variables on the strength and ductility of reinforced concrete column have been scrutinized. The strength of reinforced concrete columns are that C-2 series on strengthed with 2mm thickness steel plate are smaller than C-4 series on strengthed with 4mm steel plate. Thick steel plate of reinforced expected utilizer than the other on strength increase and specimens to be large width steel plate of each system are the utiltzer on strength increase. Ductility of C-0 specimen is 1.60, C-2 series is 2.38, C-4 series 2.63 Compare efficiency of ductility increase with each specimens, in narrow width condition (2cm, 4cm) C-2 series is more efficiency, in wide width condition (8cm, 10cm) C-4 series is more efficiency.

  • PDF