• Title/Summary/Keyword: Plastic rotational angle

Search Result 19, Processing Time 0.022 seconds

Evaluation of the Initial Rotational Stiffness of a Double Split Tee Connection (상·하부 T-stub 접합부의 초기회전강성 평가)

  • Kim, Hee Dong;Yang, Jae Guen;Lee, Jae Yun;Lee, Hyung Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.133-142
    • /
    • 2014
  • Double split tee connection is a full strength-partial restrained connection that suitable for ordinary moment frame and special moment frame which demonstrates behavior characteristics depending on the stiffness ratio of columns and beams, changes in the geometric shape of the T-stub, number of fasteners and effect of panel zone. For the double split tee connection to ensure structurally safe behavior, it needs to exhibit sufficient strength, stiffness and ductile capacity. This study sought to investigate the effects of the moment-rotation angle relationship of the double split tee connection and to evaluate the initial rotational stiffness of the double split tee connection depending on changes in the geometric shape of the T-stub. To this end, two different double split tee connection specimens are experimented which designed to change geometric parameter values (${\alpha}^{\prime}$) of the T-stub, and a three-dimensional finite element analysis was performed.

A Study of the Twisting and Extrusion Process of the Product with Trapezoidal Helical Fin from the Round Billet (원형빌렛으로부터 나선형 사다리꼴 핀을 가진 제품의 비틀림 압출가공법에 관한 연구)

  • 김한봉;진인태
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.143-151
    • /
    • 1999
  • The twisting and extrusion process of the product with trapezoidal helical fin from the round billet is developed by the upper bound analysis. The twisting of extruded product is caused by the twisted die surface connecting the die entrance section and the die exit section linearly. In the analysis, the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is increased linearly by axial distance from the die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product increases with the die twisting angle, the reduction of area, and decreases with the die length, the friction condition.

  • PDF

Effects of Hot Asymmetric Rolling on Microstructure and Formability of Aluminum Alloys (고온 비대칭압연이 알루미늄 합금의 미세조직과 성형성에 미치는 영향)

  • Jeong, Museob;Lee, Jongbeom;Han, Jun Hyun
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.647-655
    • /
    • 2019
  • In order to analyze the effect of hot asymmetric rolling on the microstructure and texture of aluminum alloy and to investigate the effect of the texture on the formability and plastic anisotropy of aluminum alloy, aluminum 6061 alloy is asymmetrically rolled at room temperature, $200^{\circ}C$, $350^{\circ}C$, and $500^{\circ}C$, and the results are compared with symmetrically rolled results. In the case of asymmetric rolling, the equivalent strain (${\varepsilon}_{eq}$) is greatest in the upper roll part where the rotational speed of the roll is high and increases with increasing rolling temperature. The increase rate of the mean misorientation angle with increasing temperature is larger than that during symmetrical rolling, and dynamic recrystallization occurs the most when asymmetrical rolling is performed at $500^{\circ}C$. In the case of hot symmetric rolling, the {001}<110> rotated cube orientation mainly develops, but in the case of hot asymmetric rolling, the {111}<110> orientation develops along with the {001}<100> cube orientation. The hot asymmetric rolling improves the formability (${\bar{r}}$) of the aluminum 6061 alloy to 0.9 and reduces the plastic anisotropy (${\Delta}r$) to near zero due to the {111}<110> shear orientation that develops by asymmetric rolling.

Analysis of Contact Stiffness and Bending Stiffness according to Contact Angle of Curvic Coupling (곡률 커플링 접촉각에 따른 접촉 강성 및 굽힘 강성해석)

  • Yu, Yonghun;Cho, Yongjoo;Lee, Donghyun;Kim, Young-Cheol
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.23-32
    • /
    • 2018
  • Coupling is a mechanical component that transmits rotational force by connecting two shafts. Curvic coupling is widely used in high-performance systems because of its excellent power transmission efficiency and easy machining. However, coupling applications change dynamic behavior by reducing the stiffness of an entire system. Contact surface stiffness is an important parameter that determines the dynamic behavior of a system. In addition, the roughness profile of a contact surface is the most important parameter for obtaining contact stiffness. In this study, we theoretically establish the process of contact and bending stiffness analysis by considering the rough surface contact at Curvic coupling. Surface roughness parameters are obtained from Nayak's random process, and the normal contact stiffness of a contact surface is calculated using the Greenwood and Williamson model in the elastic region and the Jackson and Green model in the elastic-plastic region. The shape of the Curvic coupling contact surface is obtained by modeling a machined shape through an actual machining tool. Based on this modeling, we find the maximum number of gear teeth that can be machined according to the contact angle. Curvic coupling stiffness is calculated by considering the contact angle, and the calculation process is divided into stick and slip conditions. Based on this process, we investigate the stiffness characteristics according to the contact angle.

Three-dimensional morphometric analysis of mandibule in coronal plane after bimaxillary rotational surgery

  • Lee, Sung-Tak;Choi, Na-Rae;Song, Jae-Min;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.49.1-49.9
    • /
    • 2016
  • Background: The aim of this report is to present a new reference for aesthetic mandible surgery using three-dimensional cone-beam computed tomography-based treatment planning for orthognathic surgery which can be implemented in surgical planning and perioperative procedure. Methods: To make an objective standard for evaluating aesthetic mandibular outline, we make an aesthetic scoring criteria with consideration of asymmetry, broad mandibular border line, and prominent mandibular angle. Two maxillofacial surgeons and two orthodontists rated their aesthetical evaluation from 1 to 5. Experimental group consisting of 47 female and 38 male patients who had rotational orthognathic two-jaw surgery from 2010 to 2011 were chosen according to aesthetic scoring done by two maxillofacial surgeons and two orthodontists. A high aesthetic score (${\geq}16$) means the facial contour is symmetric, with no broad and narrow aesthetic mandible frontal profiles. Control A group consisted of ten female and ten male patients who had no orthognathic surgery experience and low aesthetic score (${\geq}10$). Control B group consisted of ten female and ten male patients who had no orthognathic surgery experience and had anaesthetic mandibular frontal profile and a high aesthetic score (${\geq}16$). The three-dimensional image of the patient was taken from dental cone-beam CT (DCT) scanning (experimental group and control A group: 6 months DCT after surgery, control B group: 1st visit DCT). Each DCT was reformatted to reorient the 3D image using 3D analyzing program (OnDemand3D, cybermed Inc, CA, USA). After selection of 12 landmarks and the construction of reoriented horizontal, vertical, and coronal reference lines, 15 measurements were taken in 3D analysis of frontal mandibular morphology. Afterwards, horizontal and vertical linear measurements and angular measurements, linear ratio were obtained. Results: Mean $Go^{\prime}_{Rt}-Me^{\prime}-Go^{\prime}_{Lt}$ angular measurement was $100.74{\pm}2.14$ in female patients and $105.37{\pm}3.62$ in male patients. These showed significant difference with control A group in both genders. Ratio of $Go^{\prime}_{Rt}-Go^{\prime}_{Lt}-Me^{\prime}$ length to some linear measurements (ratio of $Me^{\prime}-Cd^{\prime}_{Rt}Cd^{\prime}_{Lt}$ to $Me^{\prime}-Go^{\prime}_{Rt}Go^{\prime}_{Lt}$, ratio of $Me^{\prime}-Go^{\prime}$ to $Me^{\prime}-Go^{\prime}_{Rt}Go^{\prime}_{Lt}$, ratio of $Go^{\prime}_{Rt}-Go^{\prime}_{Lt}$ to $Me^{\prime}-Go^{\prime}_{Rt}Go^{\prime}_{Lt}$) showed significant difference with control A group in both genders. Conclusion: This study was intended to find some standard measurement of mandible frontal view in 3D analysis of aesthetic patient. So, these potential measurement value may be helpful for orthognathic treatment planning to have more aesthetic and perspective outcomes.

Beam-Column Connection with 1200mm Deep Multi-Reduced Taper Beam for Intermediate Moment Frame (깊이 1200mm급 변단면보의 중간모멘트골조용 내진접합부 개발)

  • Jung, Si-Hwa;Alemayehe, Robel Wondimu;Park, Man-Woo;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.4
    • /
    • pp.135-146
    • /
    • 2019
  • Deep beam has high section modules compared with shallow beam of the same weight. However, deep beam has low rotational capacity and high possibility of brittle failure so it is not possible to apply deep beams with a long span to intermediate moment frames, which should exhibit a ductility of 0.02rad of a story drift angle of steel moment frames. Accordingly, KBC and AISC limit the beam depth for intermediate and special moment frame to 750mm and 920mm respectively. The purpose of this paper is to improve the seismic performance of intermediate moment frame with 1200mm depth beam. In order to enhance vulnerability of plastic deformation capacity of deeper beam, Multi-Reduced Taper Beam(MRTB) shape that thickness of beam flange is reinforced and at the same time some part of the beam flange width is weakened are proposed. Based on concept of multiple plastic hinge, MRTB is intended to satisfy the rotation requirement for intermediate moment frame by dividing total story drift into each hinge and to prevent the collapse of the main members by inducing local buckling and fracture at the plastic hinge location far away from connection. The seismic performance of MRTB is evaluated by cyclic load test with conventional connections type WUF-W, RBS and Haunch. Some of the proposed MRTB connection satisfies connection requirements for intermediate moment frame and shows improved the seismic performance compared to conventional connections.

An Evaluation of Initial Stability after Maxillary Posterior Impaction (상악의 후상방 회전이동을 시행한 환자에서의 초기 안정성 평가)

  • Ahn, Sang-Wook;Kwon, Taek-Kyun;Lee, Sung-Tak;Song, Jae-Min;Kim, Tae-Hoon;Hwang, Dae-Seok;Shin, Sang-Hoon;Chung, In-Kyo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.3
    • /
    • pp.225-232
    • /
    • 2011
  • Purpose: This study was designed to retrospectively evaluate the postsurgical initial stability of the Le Fort I osteotomy with posterior impaction and rigid internal fixation for the correction of mandibular prognathism with midface deficiency. Particular attention was paid to the magnitude and direction of the initial postsurgical change. Methods: 20 healthy patients with mandibular prognathism and midface deficiency participated in this study. All patients underwent Le Fort I osteotomy with posterior impaction and mandibular setback BSSO by one surgeon. Preoperative (T0), immediate postoperative (T1) and follow-up period (T2) cephalograms were taken and analyzed. Change between T0~T1 and T1~T2 was measured and analyzed. Results: Between T0~T1, significant differences were observed in all measurements except the ANS point and mandibular plane angle. Between T1~T2, only the occlusal plane angle was significantly changed. No significant changes were found in all other measurements. Conclusion: This study indicates that Le Fort I osteotomy with posterior impaction is stable at initial stages. Although changes in the occlusal plane angle were observed, it was caused by tooth movement after post-operative orthodontic treatment. However, more studies with larger samples are required to form definitive conclusions. Conclusion: This study indicates that Le Fort I osteotomy with posterior impaction is stable at initial stages. Although changes in the occlusal plane angle were observed, it was caused by tooth movement after post-operative orthodontic treatment. However, more studies with larger samples are required to form definitive conclusions.

DEVELOPMENT OF A PERSIMMON HARVESTING SYSTEM

  • Kim, S. M.;Park, S. J.;Kim, C. S.;Kim, M. H.;Lee, C. H.;J. Y. Rhee
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.472-479
    • /
    • 2000
  • A persimmon harvesting vehicle that can be operated in hilly orchards as well as a manipulator that can be used to harvest persimmons located in remote positions in the trees were designed and developed. The vehicle could be operated with keeping balanced position in an inclined field and its working platform could be moved up and down easy to approach fruits in a remote region with the aids of a hydraulic and a electrical and electronics systems. The weight of the vehicle was 927 kg and the center of gravity was located at 427 mm to the inner side from the center of a right driving caterpillar, 607 mm to a rear axle from the center of a front axle, and 562 mm to upward from ground. The automatic level control sensor for leveling the working platform was activated within 14.5 ∼ 16.5 degrees of slope variation. The total length of the manipulator was 1.39 m and weight is 975 g. It was powered by a 12 V geared motor to detach persimmon fruits with a rotational force. The gripper was made of plastic and rubber to increase a frictional force. In a performance evaluation test, static tipping angle, dynamic tipping angle toward front side when the vehicle was moving downward, climbing angle, driving speed of the vehicle were measured or calculated. In persimmon harvesting tests 24.9% of yield was increased by hand picking with the aid of the vehicle and additional 7% of yield were increased when the manipulator was used. Therefore, 99010 of total possible yield was achievable when both of the vehicle and the manipulator were used for the manual persimmon harvesting. Increase in 22.5% of total yield was achieved with the manipulator only.

  • PDF

An Experimental Evaluation of Structural Performance for the Beam to Column Joints in Unit Modular System (유닛 모듈러 기둥-보 조인트의 구조 성능에 대한 실험적 평가)

  • Lee, Sang Sup;Bae, Kyu Woong;Park, Keum Sung;Hong, Sung Yub
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.255-265
    • /
    • 2013
  • The major goal of this study is to develop the industrialized structural system that can build high-rise buildings using the box-shaped steel frames such as a unit module system. In order to achieve such a goal, we need the advanced details for joints that consist in a single unit. Furthermore we also need to commercialize the unit modular building system through the basic experiments, research of theoretical analysis and the achievement of seismic performance. This study derived to develop the derails in the beam-to-column joint and to carry out structural performance test. Test results, a joint with thickness of 6.0T can be possible to maintain the plastic rotational angle for strength and seismic performance. Therefore, joint with thickness of 6.0T is able to apply when considering reinforcement in the local of stress concentration.