DOI QR코드

DOI QR Code

Effects of Hot Asymmetric Rolling on Microstructure and Formability of Aluminum Alloys

고온 비대칭압연이 알루미늄 합금의 미세조직과 성형성에 미치는 영향

  • Jeong, Museob (Department of Materials Science and Engineering, Chungnam National University) ;
  • Lee, Jongbeom (Advanced Process and Materials Group, Korea Institute of Industrial Technology) ;
  • Han, Jun Hyun (Department of Materials Science and Engineering, Chungnam National University)
  • 정무섭 (충남대학교 신소재공학과) ;
  • 이종범 (한국생산기술연구원 융합공정소재그룹) ;
  • 한준현 (충남대학교 신소재공학과)
  • Received : 2019.09.06
  • Accepted : 2019.09.20
  • Published : 2019.10.27

Abstract

In order to analyze the effect of hot asymmetric rolling on the microstructure and texture of aluminum alloy and to investigate the effect of the texture on the formability and plastic anisotropy of aluminum alloy, aluminum 6061 alloy is asymmetrically rolled at room temperature, $200^{\circ}C$, $350^{\circ}C$, and $500^{\circ}C$, and the results are compared with symmetrically rolled results. In the case of asymmetric rolling, the equivalent strain (${\varepsilon}_{eq}$) is greatest in the upper roll part where the rotational speed of the roll is high and increases with increasing rolling temperature. The increase rate of the mean misorientation angle with increasing temperature is larger than that during symmetrical rolling, and dynamic recrystallization occurs the most when asymmetrical rolling is performed at $500^{\circ}C$. In the case of hot symmetric rolling, the {001}<110> rotated cube orientation mainly develops, but in the case of hot asymmetric rolling, the {111}<110> orientation develops along with the {001}<100> cube orientation. The hot asymmetric rolling improves the formability (${\bar{r}}$) of the aluminum 6061 alloy to 0.9 and reduces the plastic anisotropy (${\Delta}r$) to near zero due to the {111}<110> shear orientation that develops by asymmetric rolling.

Keywords

References

  1. G. Burger, A. Gupta, P. Jeffrey and D. Lloyd, Mater. Charact., 35, 23 (1995). https://doi.org/10.1016/1044-5803(95)00065-8
  2. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus and W. Miller, Mater. Sci. Eng., A, 280, 102 (2000). https://doi.org/10.1016/S0921-5093(99)00674-7
  3. K. Ito and H. Kobayashi, Adv. Eng. Mater., 8, 828 (2006). https://doi.org/10.1002/adem.200600072
  4. A. Alhamidi and M. Dewi, Int. J. Mech. Eng. Educ., 3, 10 (2018).
  5. V. K. Barnwal, R. Raghavan, A. Tewari, K. Narasimhan and S. K. Mishra, Mater. Sci. Eng., A, 679, 56 (2017). https://doi.org/10.1016/j.msea.2016.10.027
  6. I. S. Kim, S. K. Nam and D. N. Lee, Appl. Mech. Mater., 873, 60 (2017). https://doi.org/10.4028/www.scientific.net/AMM.873.60
  7. S. H. Lee, Y. Saito, T. Sakai and H. Utsunomiya, Mater. Sci. Eng., A, 325, 228 (2002). https://doi.org/10.1016/S0921-5093(01)01416-2
  8. P. Ratchev, B. Verlinden, P. D. Smet and P. V. Houtte, Acta Mater., 46, 3523 (1998). https://doi.org/10.1016/S1359-6454(98)00033-0
  9. J. Hirsch, Mater. Sci. Forum, 242, 33 (1997). https://doi.org/10.4028/www.scientific.net/MSF.242.33
  10. H. Takahashi, H. Motohashi and S. Tsuchida, Int. J. Plast., 12, 935 (1996). https://doi.org/10.1016/S0749-6419(96)00035-6
  11. S. K. Nam, H. B. Jeong and I. Kim, Mater. Res. Innovations, 15, 454 (2011). https://doi.org/10.1179/143307511X12858957675714
  12. J. Hu, K. Ikeda and T. Murakami, Mater. Trans., 36, 1363 (1995). https://doi.org/10.2320/matertrans1989.36.1363
  13. J. H. Han, K. H. Oh, J. C. Lee, Mater. Sci. Eng., A, 387, 240 (2004). https://doi.org/10.1016/j.msea.2004.01.132
  14. J. Sidor, A. Miroux, R. Petrov and L. Kestens, Philos. Mag., 88, 3779 (2008). https://doi.org/10.1080/14786430802064659
  15. M. Tajally and E. Emadoddin, Mater. Des., 32, 1594 (2011). https://doi.org/10.1016/j.matdes.2010.09.001
  16. H. Inoue and T. Takasugi, Mater. Trans., 48, 2014 (2007). https://doi.org/10.2320/matertrans.L-MRA2007871
  17. O. Engler, H. Kim and M. Y. Huh, Mater. Sci. Technol., 17, 75 (2001). https://doi.org/10.1179/026708301101508990
  18. C. H. Choi, K. H. Kim and D. N. Lee, Mater. Sci. Forum, 273, 391 (1998). https://doi.org/10.4028/www.scientific.net/MSF.273-275.391
  19. J. Hu, K. Ikeda and T. Murakami, J. Mater. Process Thech., 73, 49 (1998). https://doi.org/10.1016/S0924-0136(97)00211-2
  20. J. Sidor, A. Miroux, R. Petrov and L. Kestens, Philos. Mag., 99, 30 (2008).
  21. S. Tamimi, J. P. Correia, A. B. Lopes, S. Ahzi, F. Barlat and J. J. Gracio, Mater. Sci. Eng., A, 603, 150 (2014). https://doi.org/10.1016/j.msea.2014.02.048
  22. H. Utsunomiya, T. Ueno and T. Sakai, Scr. Mater., 57, 1109 (2007). https://doi.org/10.1016/j.scriptamat.2007.08.024
  23. S. Gourdet and F. Montheillet, Acta Mater., 51, 2685 (2003). https://doi.org/10.1016/S1359-6454(03)00078-8
  24. N. Tsuji, Y. Nagai, T. Sakai and Y. Saito, Mater. Trans., 39, 252 (1998). https://doi.org/10.2320/matertrans1989.39.252
  25. C. H. Choi, J. W. Kwon, K. H. Oh and D. N. Lee, Acta Mater., 45, 5119 (1997). https://doi.org/10.1016/S1359-6454(97)00169-9
  26. G. I. Taylor and H. Quinney, Phil. Trans. Roy. Soc. Lond. Math. Phys. Sci., 230, 323 (1931). https://doi.org/10.1098/rsta.1932.0009