Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.10.647

Effects of Hot Asymmetric Rolling on Microstructure and Formability of Aluminum Alloys  

Jeong, Museob (Department of Materials Science and Engineering, Chungnam National University)
Lee, Jongbeom (Advanced Process and Materials Group, Korea Institute of Industrial Technology)
Han, Jun Hyun (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.29, no.10, 2019 , pp. 647-655 More about this Journal
Abstract
In order to analyze the effect of hot asymmetric rolling on the microstructure and texture of aluminum alloy and to investigate the effect of the texture on the formability and plastic anisotropy of aluminum alloy, aluminum 6061 alloy is asymmetrically rolled at room temperature, $200^{\circ}C$, $350^{\circ}C$, and $500^{\circ}C$, and the results are compared with symmetrically rolled results. In the case of asymmetric rolling, the equivalent strain (${\varepsilon}_{eq}$) is greatest in the upper roll part where the rotational speed of the roll is high and increases with increasing rolling temperature. The increase rate of the mean misorientation angle with increasing temperature is larger than that during symmetrical rolling, and dynamic recrystallization occurs the most when asymmetrical rolling is performed at $500^{\circ}C$. In the case of hot symmetric rolling, the {001}<110> rotated cube orientation mainly develops, but in the case of hot asymmetric rolling, the {111}<110> orientation develops along with the {001}<100> cube orientation. The hot asymmetric rolling improves the formability (${\bar{r}}$) of the aluminum 6061 alloy to 0.9 and reduces the plastic anisotropy (${\Delta}r$) to near zero due to the {111}<110> shear orientation that develops by asymmetric rolling.
Keywords
aluminum alloy; asymmetric rolling; texture; plastic strain ratio; plastic anisotropy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Burger, A. Gupta, P. Jeffrey and D. Lloyd, Mater. Charact., 35, 23 (1995).   DOI
2 A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus and W. Miller, Mater. Sci. Eng., A, 280, 102 (2000).   DOI
3 K. Ito and H. Kobayashi, Adv. Eng. Mater., 8, 828 (2006).   DOI
4 A. Alhamidi and M. Dewi, Int. J. Mech. Eng. Educ., 3, 10 (2018).
5 V. K. Barnwal, R. Raghavan, A. Tewari, K. Narasimhan and S. K. Mishra, Mater. Sci. Eng., A, 679, 56 (2017).   DOI
6 I. S. Kim, S. K. Nam and D. N. Lee, Appl. Mech. Mater., 873, 60 (2017).   DOI
7 S. H. Lee, Y. Saito, T. Sakai and H. Utsunomiya, Mater. Sci. Eng., A, 325, 228 (2002).   DOI
8 P. Ratchev, B. Verlinden, P. D. Smet and P. V. Houtte, Acta Mater., 46, 3523 (1998).   DOI
9 J. Hirsch, Mater. Sci. Forum, 242, 33 (1997).   DOI
10 H. Takahashi, H. Motohashi and S. Tsuchida, Int. J. Plast., 12, 935 (1996).   DOI
11 S. K. Nam, H. B. Jeong and I. Kim, Mater. Res. Innovations, 15, 454 (2011).   DOI
12 J. Hu, K. Ikeda and T. Murakami, Mater. Trans., 36, 1363 (1995).   DOI
13 J. H. Han, K. H. Oh, J. C. Lee, Mater. Sci. Eng., A, 387, 240 (2004).   DOI
14 J. Sidor, A. Miroux, R. Petrov and L. Kestens, Philos. Mag., 88, 3779 (2008).   DOI
15 M. Tajally and E. Emadoddin, Mater. Des., 32, 1594 (2011).   DOI
16 H. Inoue and T. Takasugi, Mater. Trans., 48, 2014 (2007).   DOI
17 O. Engler, H. Kim and M. Y. Huh, Mater. Sci. Technol., 17, 75 (2001).   DOI
18 J. Sidor, A. Miroux, R. Petrov and L. Kestens, Philos. Mag., 99, 30 (2008).
19 C. H. Choi, K. H. Kim and D. N. Lee, Mater. Sci. Forum, 273, 391 (1998).   DOI
20 J. Hu, K. Ikeda and T. Murakami, J. Mater. Process Thech., 73, 49 (1998).   DOI
21 S. Tamimi, J. P. Correia, A. B. Lopes, S. Ahzi, F. Barlat and J. J. Gracio, Mater. Sci. Eng., A, 603, 150 (2014).   DOI
22 H. Utsunomiya, T. Ueno and T. Sakai, Scr. Mater., 57, 1109 (2007).   DOI
23 S. Gourdet and F. Montheillet, Acta Mater., 51, 2685 (2003).   DOI
24 N. Tsuji, Y. Nagai, T. Sakai and Y. Saito, Mater. Trans., 39, 252 (1998).   DOI
25 C. H. Choi, J. W. Kwon, K. H. Oh and D. N. Lee, Acta Mater., 45, 5119 (1997).   DOI
26 G. I. Taylor and H. Quinney, Phil. Trans. Roy. Soc. Lond. Math. Phys. Sci., 230, 323 (1931).   DOI