• Title/Summary/Keyword: Plastic parts

Search Result 631, Processing Time 0.026 seconds

Tool Design and Numerical Verification for Thick Plate Forming of Hollow-Partitioned Steam Turbine Nozzle Stator (스팀 터빈용 중공 분할형 노즐 정익의 후판 성형을 위한 금형 설계 및 해석적 검증)

  • Kang, B.K.;Kwak, B.S.;Yoon, M.J.;Jeon, J.Y.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.379-389
    • /
    • 2016
  • As a stator for steam turbine diaphragm, hollow-type nozzle stator to substitute for conventional solid one is introduced in this study. This hollowed stator can be separated into two parts such as upper and lower plates with large and curved surface area. This study focuses on thick plate forming process for the upper plate of the hollow-partitioned nozzle stator. First, to reduce forming defects such as under-cut and localized thinning of the deformed plate, and to avoid tool interruption between forming punch and lower die, tool design including the position determination of forming surfaces is performed. Uni-axial tensile tests are carried out using SUS409L steel plate with initial thickness of 5.00mm, and plastic strain ratio (r-value) is also obtained. Due to the asymmetric curved configuration of the upper plate, it is hard to adopt a series of blank holder or draw-bead, so the initial plate during this thick plate forming experiences unstable and non-uniform contact. To easy this forming difficulty and find suitable tool geometry without sliding behavior of the workpiece in the die cavity, two geometric parameters with respect to each shoulder angle of the lower die and the upper punch are adopted. FE models with consideration of 21 combinations for the geometric parameters are built-up, and numerical simulations are performed. From the simulated and predicted results, it is shown that the geometric parameter combinations with ($30^{\circ}$, $90^{\circ}$) and ($45^{\circ}$, $90^{\circ}$) for the shoulder angle of the lower die and the upper punch are suitably applied to this upper plate forming of the hollow-partitioned nozzle stator used for the turbine diaphragm.

Optimization of Design Parameters for Lock-Claws of Pneumatic Fitting Using Taguchi Method (다구찌기법을 이용한 공압피팅용 원형 판스프링의 설계변수 최적화)

  • Kwon, Tae Ha;Suh, Chang Hee;Lee, Rac Gyu;Oh, Sang Kyun;Jung, Yun-Chul;Lim, Hwan Bin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1541-1546
    • /
    • 2013
  • The stress concentration of lock-claws, which are one of the important parts for pneumatic fitting for a flexible tube connection, was investigated by finite element simulation. In this study, the generation of the local plastic deformation was predicted when the tube was hooked up to a pneumatic fitting in order to disperse the stress concentration, and design optimization was carried out using the Taguchi method. For the optimization, the outer width, bending angle, and inner radius of the lock-claws are used as main variables. As a result, their respective contribution ratios are revealed as 81.3%, 10.9%, and 1.5%. The ratio of the total stress distribution was improved by 4% compared with the initial design of the lock-claws.

A Study on the Microstructure and Anisotropic Mechanical Properties of Oxygen-Free Copper Fabricated by Equal Channel Angular Pressing (ECAP공법으로 제조된 무산소동의 미세조직 및 기계적 성질 이방성에 대한 고찰)

  • Lee, Jaekun;Hong, Younggon;Kim, Hyoungseop;Park, Sunghyuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.492-500
    • /
    • 2019
  • Equal channel angular pressing(ECAP) is a severe plastic deformation technique capable of introducing large shear strain in bulk metal materials. However, if an ECAPed material has an inhomogeneous microstructure and anisotropic mechanical properties, this material is difficult to apply as structural components subjected to multi-axial stress during use. In this study, extruded oxygen-free copper(OFC) rods with a large diameter of 42 mm are extruded through ECAP by route Bc up to 12 passes. The variations in the microstructure, hardness, tensile properties, and microstructural and mechanical homogeneity of the ECAPed samples are systematically analyzed. High-strength OFC rods with a homogeneous and equiaxed-ultrafine grain structure are obtained by the repeated application of ECAP up to 8 and 12 passes. ECAPed samples with 4 and 8 passes exhibit much smaller differences in terms of the average grain sizes on the cross-sectional area and the tensile strengths along the axial and circumferential directions, as compared to the samples with 1 and 2 passes. Therefore, it is considered that the OFC materials, which are fabricated via the ECAP process with pass numbers of a multiple of 4, are suitable to be applied as high-strength structural parts used under multi-axial stress conditions.

Behavior study of NC and HSC RCCs confined by GRP casing and CFRP wrapping

  • Sajedi, Fathollah;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.417-432
    • /
    • 2019
  • This paper presents the results of axial compression testing and numerical modeling on reinforced concrete columns (RCC) with normal concrete (NC) and high-strength concrete (HSC), RCC confined by glass-fiber reinforced plastic pipes (GRP) casing as well as carbon fiber reinforced polymer (CFRP), The major parameters evaluated in the experiments were the effects of concrete type, GRP casing and CFRP wrapping, as well as the number of CFRP layers. 12 cylindrical RCC ($150{\times}600mm$) were prepared and divided into two groups, NC and HSC. Each group was divided into two parts; with and without GRP casing. In each part, one column was without CFRP strengthening layer, a column was wrapped with one CFRP layer and another column with two CFRP layers. All columns were tested under concentrated compression load. Numerical modeling was performed using ABAQUS software and the results of which were compared with experimental findings. A good agreement was found between the results. Results indicated that the utilization of CFRP wrapping and GRP casing improved compression capacity and ductility of RCC. The addition of one and two layer-FRP wrapping increased capacity in the NC group to an average of 18.5% and 26.5% and in the HSC group to an average of 10.2% and 24.8%. Meanwhile, the utilization of GRP casing increased the capacity of the columns by 3 times in the NC group and 2.38 times in the HSC group. The results indicated that although both CFRP wrapping and GRP casing increased confinement, the GRP casing gave more increase capacity and ductility of the RCC due to higher confinement. Furthermore, the confinement effect was higher on NC group.

Tensile Property Analysis of NCF Composite Laminated Structure for HP-CRTM Forming Process (HP-CRTM 성형공법을 적용하기 위한 NCF 복합재 적층구조에 따른 인장특성 분석)

  • Byeon, Ki-Seok;Shin, Yu-Jeong;Jeung, Han-Kyu;Park, Si-Woo;Roh, Chun-Su;Je, Jin-Soo;Kwon, Ki-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.59-64
    • /
    • 2019
  • In recent years, the HP-CRTM method, which has the ability to produce carbon fiber-reinforce plastic composites at high speeds, has come into the spotlight in the automotive parts industry, which demands high productivity. Multi-axial carbon fabric, an intermediate material used in this HP-CRTM molding process, consists of layered fibers without crimp, which makes it better in terms of tensile and shear strength than the original woven fabrics. The NCF (non-crimp fabric) can form the layers of the carbon fiber, which have different longitudinal and lateral directions, and ${\pm}{\theta}$ degrees, depending on the product's properties. In this research, preforms were made with carbon fibers of ${\pm}45^{\circ}$ and $0/90^{\circ}$, which were lamination structures under seven different conditions, in order to create the optimal laminated structure for automobile reinforcement center floor tunnels. Carbon fiber composites were created using each of the seven differently laminated preforms, and polyurethane was used as the base material. The specimens were manufactured in accordance with the ASTM D3039 standards, and the effect of the NCF lamination structure on the mechanical properties was confirmed by a tensile test.

Interaction effects of pen environment and sex on behavior, skin lesions and physiology of Windsnyer pigs

  • Mkwanazi, Mbusiseni Vusumuzi;Kanengoni, Arnold Tapera;Chimonyo, Michael
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.452-458
    • /
    • 2019
  • Objective: The study was carried to determine the interaction effects of pen enrichment and sex on behavioral activities, skin lesions and physiology of Windsnyer pigs. Methods: Forty-eight growing Windsnyer pigs of both sex, with an average initial body weight of 21.6 (${\pm}9.01$) kg were used. Four pigs were randomly assigned to either enriched or barren pens at a stocking density of $0.35m^2/pig$. Enriched pens contained 2 L bottles filled with stones and suspended at head level on ropes stretching across the pens. In addition, two plastic balls (90 mm in diameter) and 500 mL bottles (235 mm long) were placed on the floor of each enriched pen. Results: Pigs in barren environments had higher heart rates (p<0.001) than those in enriched pens. There was an interaction of pen environment and sex on rectal temperature (p<0.001). Females in enriched pens had higher rectal temperatures (p<0.05) than females in barren pens. There was no interaction of pen environment and sex on time spent eating and drinking (p>0.05). Time spent bullying was influenced (p<0.05) by pen environment and sex. Female pigs in barren environment spent more time on bullying than females in enriched pens. There was an interaction of pen environment and sex on time spent lying down and walking (p<0.05). Female pigs in enriched pens spent more time lying down than females in barren pens. Males in barren pens spent more time walking than males in enriched pens while no effect of pen environment was observed in females. There was an interaction of pen environment and sex on the number of skin lesions in the head, neck and shoulder region and other parts of the body (p<0.05). Conclusion: It was concluded that pen enrichment reduced the number of skin lesions and anti-social behaviors, especially for female pigs. There is a need, therefore of housing indigenous pigs under confinement.

Evaluation and comparison of GRP and FRP applications on the behavior of RCCs made of NC and HSC

  • Shafieinia, Mohsen;Sajedi, Fathollah
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.495-506
    • /
    • 2019
  • This paper presents the results of axial pressure testing on reinforced concrete columns (RCCs) filled with confined normal concrete (NC) and high-strength concrete (HSC) using glass-fiber reinforced plastic pipes (GRP) casing as well as fiber reinforced polymer (FRP). This study aims to evaluate the behavior and mechanical properties of columns confined with GRP casing and FRP wrapping under pressure loads. The major parameters in the experiments were the type of concrete, the effect of GRP casing and FRP wrapping, as well as the number of FRP layers. 12 cylindrical RCCs (150*600) mm were prepared and divided into two groups, NC and HSC, and each group was divided into two parts. In each part, one column was without FRP strengthening layer, a column was wrapped with one FRP layer and another column with two FRP layers. All columns were tested under concentrated compression load. The results of the study showed that the utilization of FRP wrapping and GRP casing improved compression capacity and ductility of RCCs. The addition of one and two layers-FRP wrapping increased compression capacity in the NC group to an average of 18.5% and 26.5% and to an average of 10.2% and 24.8% in the HSC group. Meanwhile, the utilization of GRP casing increased the compression capacity of the columns by 4 times in the NC group and 3.38 times in the HSC group. The results indicated that although both FRP wrapping and GRP casing result in confinement, the GRP casing resulted in increased compression capacity and ductility of the RCCs due to higher confinement. Furthermore, the confinement effect was higher on columns made with NC.

A Study on Fracture Property of Adhesive Interface at Tapered Double Cantilever Beam with Inhomogeneous Composite Material due to Loading Conditions of In-plane and Out-plane (면내 및 면외 하중 조건들에 따른 이종 복합 소재를 가진 경사진 이중외팔보에서의 접착계면의 파괴 특성 연구)

  • Lee, Jung-Ho;Kim, Jae-Won;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.401-407
    • /
    • 2020
  • At the engineering and industrial areas, the lightweight composite material has been substituted with the metals, such as steel at the structural parts. This composite material has been applied by the adhesive bonding method, as well as the joint methods with rivets, welds or bolts and nuts. The study on the strength characteristics of adhesive interface is necessarily required in order to apply the method to composite materials. CFRP specimens as the fiber reinforced plastic composites were manufactured easily and this study was carried out. The static experiments were performed under the loading conditions of in-plane and out-plane shears with the inhomogeneous composite TDCB specimens with CFRP, aluminum (Al6061), and aluminum foam (Al-foam). Through the result of this study, the durability on the inhomogeneous composite structure with adhesive interface was investigated by examining the fracture characteristic and the point in time.

Design of a Novel 3D Printed Harmonic Drive and Analysis of its Application (3D 프린팅 기법을 이용한 하모닉 드라이브(Harmonic Drive) 설계 및 응용 분석)

  • Kim, Sang-Hyun;Byeon, Chang-Sup;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.38 no.1
    • /
    • pp.27-31
    • /
    • 2022
  • Harmonic drives have attracted increasing attention with the development of materials, parts, and related equipment. Harmonic drives exhibit high deceleration, high accuracy, and light weight. The stiffness of flexible splines according to the radial load is studied using a commercial FEM program to design the structure of the flexible spline and finite element to improve the weight and price competitiveness of harmonic drives. In addition, several studies have measured and compared friction coefficients based on 3D printed tread patterns. However, owing to the characteristics of plastic materials, a decrease in stiffness in the radial direction is inevitable. To prevent a decrease in stiffness in the radial direction, we designed and manufactured flex splines with a wrinkle shape. Through structural analysis, the reaction force and stiffness in the radial direction were determined. In addition, the maximum angle of the mound was derived by theoretical calculations, and the performance of the harmonic drive was compared with the results obtained in the mound experiment. Structural analysis shows that the shape of wrinkles decreased the stress and reaction force and increased the safety factor in comparison with that of the circular shape. During performance verification through continuous experiments, the developed harmonic drive showed continuous performance similar to that of an actual tank model. It is expected that the flex spline with a compliant spring and wrinkle shape will prevent a decrease in the radial stiffness.

3D-printed Face Shields for Healthcare Professionals Battling COVID-19 Pandemic

  • Kim, Gyeong-Man;Assefa, Dawit;Kang, Joon Wun;Gebreyouhannes, Esayas
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.226-237
    • /
    • 2020
  • As the number of reported COVID-19 cases rises around the world, regions affected by the virus are taking serious measures to contain its spread. Face shields are one of the highest-need personal protective equipment (PPE) during COVID-19 pandemic. Beyond traditional face masks, as known cases of the coronavirus soar, currently there is a significant shortage of face shields around the world. In response, the protective face shields were designed and fabricated with open-source 3D modelling software and 3D printing technology, respectively. Our face shield consisted of two parts only; a reusable 3D printed headband and a visor made of transparent plastic sheet, as barrier. The resulting 3D printed face shields are affordable, lightweight, one-size-fits-most and ready-to-wear with minimal assemblies, and go on easily over glass, goggle and face mask. To ensure being donated to the healthcare professionals without risk infected by any pathogens, the 3D printed face shields were successfully be disinfected with ultraviolet germicidal irradiation (UVGI dosage of 1000 mJ/cm2) and 70% alcohol. For routine disinfection a UVGI chamber was designed and optimized to provide uniform UV-C illumination with an appreciated fluence for complete decontamination. More than 1,000 face shields were produced already and donated to the special hospitals for COVID-19 patients, quarantines, government and medical agencies in Ethiopia as well as in East-African countries. With certainty, our intention goes beyond the hospitals and other first responders, but not limited for all those who have to stay in the service or be in contact with many other people in the time of COVID-19 pandemic.