• Title/Summary/Keyword: Plastic Strain range

Search Result 189, Processing Time 0.027 seconds

Lateral impact behaviour of concrete-filled steel tubes with localised pitting corrosion

  • Gen Li;Chao Hou;Luming Shen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.615-631
    • /
    • 2023
  • Steel corrosion induces structural deterioration of concrete-filled steel tubes (CFSTs), and any potential extreme action on a corroded CFST would pose a severe threat. This paper presents a comprehensive investigation on the lateral impact behaviour of CFSTs suffering from localised pitting corrosion damage. A refined finite element analysis model is developed for the simulation of locally corroded CFSTs subjected to lateral impact loads, which takes into account the strain rate effects on concrete and steel materials as well as the random nature of corrosion pits, i.e., the distribution patterns and the geometric characteristics. Full-range nonlinear analysis on the lateral impact behaviour in terms of loading and deforming time-history relations, nonlinear material stresses, composite actions, and energy dissipations are presented for CFSTs with no corrosion, uniform corrosion and pitting corrosion, respectively. Localised pitting corrosion is found to pose a more severe deterioration on the lateral impact behaviour of CFSTs due to the plastic deformation concentration, the weakened confinement and the reduction in energy absorption capacity of the steel tube. An extended parametric study is then carried out to identify the influence of the key parameters on the lateral impact behaviour of CFSTs with localised pitting corrosion. Finally, simplified design methods considering the features of pitting corrosion are proposed to predict the dynamic flexural capacity of locally pitted CFSTs subjected to lateral impact loads, and reasonable accuracy is obtained.

Severe acid rain simulation using geotechnical experimental tests with mathematical modeling

  • Raheem, Aram M.;Ali, Shno M.
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.549-565
    • /
    • 2022
  • Severe acid rains can be a major source for geotechnical and environmental problems in any soil depending on the acid type and concentration. Hence, this study investigates the individual severe effects of sulfuric, hydrochloric and nitric acids on the geotechnical properties of real field soil through a series of experimental laboratory tests. The laboratory program consists of experimental tests such as consistency, compaction, unconfined compression, pH determination, electrical conductivity, total dissolved salts, total suspended solids, gypsum and carbonates contents. The experimental tests have been performed on the untreated soil and individual acid treated soil for acid concentrations range of 0% to 20% by weight. In addition, a unique hyperbolic mathematical model has been used to predict significant geotechnical characteristics for acid treated soil. The plastic and liquid limits and optimum moisture content have been increased under the effect of all the used acids whereas the maximum dry density and unconfined stress-strain behavior have been decreased with increasing the acid concentrations. Moreover, the used hyperbolic mathematical model has predicted all the geotechnical characteristics very well with a very high coefficient of determination (R2) value and lowest root mean square error (RMSE) estimate.

Rheological Behavior of Semi-Solid Ointment Base (Vaseline) in Steady Shear Flow Fields (정상전단유동장에서 반고형 연고기제(바셀린)의 레올로지 거동)

  • Song, Ki-Won;Kim, Yoon-Jeong;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.3
    • /
    • pp.137-148
    • /
    • 2007
  • Using a strain-controlled rheometer [Rheometrics Dynamic Analyzer (RDA II)], the steady shear flow properties of a semi-solid ointment base (vaseline) have been measured over a wide range of shear rates at temperature range of $25{\sim}60^{\circ}C$. In this article, the steady shear flow properties (shear stress, steady shear viscosity and yield stress) were reported from the experimentally obtained data and the effects of shear rate as well as temperature on these properties were discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters (yield stress, consistency index and flow behavior index). Main findings obtained from this study can be summarized as follows : (1) At temperature range lower than $40^{\circ}C$, vaseline is regarded as a viscoplastic material having a finite magnitude of yield stress and its flow behavior beyond a yield stress shows a shear-thinning (or pseudo-plastic) feature, indicating a decrease in steady shear viscosity as an increase in shear rate. At this temperature range, the flow curve of vaseline has two inflection points and the first inflection point occurring at relatively lower shear rate corresponds to a static yield stress. The static yield stress of vaseline is decreased with increasing temperature and takes place at a lower shear rate, due to a progressive breakdown of three dimensional network structure. (2) At temperature range higher than $45^{\circ}C$, vaseline becomes a viscous liquid with no yield stress and its flow character exhibits a Newtonian behavior, demonstrating a constant steady shear viscosity regardless of an increase in shear rate. With increasing temperature, vaseline begins to show a Newtonian behavior at a lower shear rate range, indicating that the microcrystalline structure is completely destroyed due to a synergic effect of high temperature and shear deformation. (3) Over a whole range of temperatures tested, the Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have an almostly equivalent ability to quantitatively describe the steady shear flow behavior of vaseline, whereas the Bingham, Casson,and Vocadlo models do not give a good ability.

Identification of damage states and damge indices of single box tunnel from inelastic seismic analysis (비탄성 지진 해석을 통한 박스 터널의 손상 상태 및 손상 지수 규명)

  • Park, Duhee;Lee, Tae-Hyung;Kim, Hansup;Park, Jeong-Seon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.119-128
    • /
    • 2016
  • In a performance-based design, the structural safety is estimated from pre-defined damage states and corresponding damage indices. Both damage states and damage indices are well defined for above-ground structures, but very limited studies have been performed on underground structures. In this study, we define the damage states and damage indices of a cut-and-cover box tunnel which is one of typical structures used in metro systems, under a seismic excitation from a series of inelastic frame analyses. Three damage states are defined in terms of the number of plastic hinges that develop within the structure. The damage index is defined as the ratio of the elastic moment to the yield moment. Through use of the proposed index, the inelastic behavior and failure mechanism of box tunnels can be simulated and predicted through elastic analysis. In addition, the damage indices are linked to free-field shear strains. Because the free-field shear strain can be easily calculated from a 1D site response analysis, the proposed method can be readily used in practice. Further studies are needed to determine the range of shear strains and associated uncertainties for various types of tunnels and site profiles. However, the inter-linked platform of damage state - damage index - shear wave velocity - shear strain provides a novel approach for estimating the inelastic response of tunnels, and can be widely used in practice for seismic designs.

Application of ultrasonic energy to enhance capability of soil improving material (지반보강용 주입재의 성능향상을 위한 초음파 에너지의 활용)

  • Moon, Jun-ho;Xin, Zhenhua;Jeong, Ghang-bok;Kim, Young-uk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.567-576
    • /
    • 2017
  • In a performance-based design, the structural safety is estimated from pre- defined damage states and corresponding damage indices. Both damage states and damage indices are well defined for above-ground structures, but very limited studies have been performed on underground structures. In this study, we define the damage states and damage indices of a cut-and-cover box tunnel which is one of typical structures used in metro systems, under a seismic excitation from a series of inelastic frame analyses. Three damage states are defined in terms of the number of plastic hinges that develop within the structure. The damage index is defined as the ratio of the elastic moment to the yield moment. Through use of the proposed index, the inelastic behavior and failure mechanism of box tunnels can be simulated and predicted through elastic analysis. In addition, the damage indices are linked to free-field shear strains. Because the free-field shear strain can be easily calculated from a 1D site response analysis, the proposed method can be readily used in practice. Further studies are needed to determine the range of shear strains and associated uncertainties for various types of tunnels and site profiles. However, the inter-linked platform of damage state - damage index - shear wave velocity - shear strain provides a novel approach for estimating the inelastic response of tunnels, and can be widely used in practice for seismic designs.

THE EFFECT OF INDOMETHACIN ON PROSTAGLANDINS IN 4-NITROQUINOLINE-N-OXIDE (4-NQO) INDUCED PALATAL CARCINOMA OF ALBINO RATS (Indomethacin이 4-Nitroquinoline-N-Oxide(4-NQO) 유도 백서 구개암 발암과정에서 prostaglandins에 미치는 영향에 관한 연구)

  • Kim, Young-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.11 no.1
    • /
    • pp.187-202
    • /
    • 1989
  • This study was undertaken to investigate the effect of indomethacin on prostaglandins in 4-Nitroquinoline-N-Oxide (4-NQO) induced palatal carcinoma of albino rats. 128 Sprague-Dawley strain albino rats-about 100g in body weight-were used in this study, divided into as belows; 1. Normal group (16-albino rats) with no treatment, 2. Control group (16-albino rats) treated with prophylene application onto palatal mucosa 3 times a week. 3. Experimental group I (48-albino rats) treated with 0.5% 4-NQO in prophylene application onto palatal mucosa 3 times a week. 4. Experimental group II (48-albino rats) treated with 0.5% 4-NQO in prophylene application with administered $20{\mu}g/ml$ of indomethacin in drinking water ad. lib. Four animals were sacrificed 7th, 13th, 19th, and 25th week respectively in normal and control group, and 7th, 9th, 11th, 13th, 15th, 17th, 19th, 21st, 23rd, 25th, 27th and 29th week respectively in experimental group I and II at each time. The palatal and lingual tissues were excised and kept frozen at $-70^{\circ}C$. Densitometer scan and Beta-counting counter were used for the thin layer chromatography of the arachidonic acid metabolites. The obtained results were as belows; 1. In normal and control group, there was little change of the arachidonic acid metabolites during experiment period, and the tissue homogenates included prostaglandin $D_2$, 6-keto-prostaglandin $F_{1{\alpha}}$, prostaglandin $E_2$, thromboxane $B_2$, prostaglandin $F_{2{\alpha}}$ in that order of relative abundances. 2. In experimental group I, prostaglandin $D_2$, and prostaglandin $E_2$ were increased, while 6-keto-prostaglandin $F_{1{\alpha}}$ and thromboxane $B_2$ were decreased in relative abundances of arachidonic acid metabolites. And there was little change in prostaglandin $F_{1{\alpha}}$ 3. In experimental group II, prostaglandin $D_2$, and prostaglandin $E_2$ were increased, while 6-keto-prostaglandin $F_{1{\alpha}}$ and thromboxane $B_2$ were decreased in relative abundances of arachidonic acid metabolites. And there was little change in prostaglandin $F_{2{\alpha}}$ also. 4. In the range of increase in prostaglandin $D_2$, and prostaglandin $E_2$, and that of decrease in 6-keto-prostaglandin $F_{1{\alpha}}$ and thromboxane $B_2$, in relative abundances, there was wider in experimental group I than in group II. 5. In the range of increase in prostaglandin $D_2$, and prostaglandin $E_2$, and that of decrease in 6-keto-prostaglandin $F_{1{\alpha}}$ and thromboxane $B_2$, in relative abundances, there was wider in palatal mucosa than in lingual mucosa in experimental group I and II.

  • PDF

An Experiment Study on Verification for the Performance of Seismic Retrofit System Using of Dual Frame With Different Eigenperiod (진동주기가 다른 듀얼프레임을 이용한 내진보강시스템의 성능검증을 위한 실험적 연구)

  • Oh, Sang-Hoon;Choi, Kwang-Yong;Ryu, Hong-Sik;Kim, Young-Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.91-100
    • /
    • 2018
  • The new seismic retrofit system in study propose is the Dual system, which aims to be applied to the seismically vulnerable low-story buildings. The Dual system is composed of existing structure, external retrofit frame and hysteretic steel dampers installed between former two components. The Dual system dissipates the energy by plastic deformation of steel damper caused by relative displacement due to the differences in stiffness, weight, and eigenperiod of each components. The dynamic test with shaking table was performed to verify the seismic performance of the proposed Dual system. As a result of the dynamic test, it is expected that the Dual system will improve the seismic performance due to the reduction of strain of 56% and the damage reduction of 93%, even though the energy is 1.84 times higher than that of the dual system. And the results of the study are presented as basic data of the study for setting the design range of the dual system.

平面應力 破壞靭性値 擧動에 관한 硏究

  • 송삼홍;고성위;정규동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.376-385
    • /
    • 1987
  • In this study, the plane stress fracture toughness and Tearing modulus are investigated for various crack ratios using the J integral. To evaluate the J integral and Tearing modulus, both experiments and estimation are used. The thickness of the low carbon steel specimens that is used in the experiments is 3mm. The type of specimen that is considered in the study is center-cracked-tension one. The measurements of crack length are performed by unloading compliance method. In the estimation of crack parameters such as the J integral and load line displacement, the Ramberg and Osgood stress strain law is assumed. Then simple formulas are given for estimating the crack parameters from contained yielding to fully plastic solutions. Obtained results are as follows; (1) When the crack ratio is in the range of 0.500 - 0.701, the plane stress fracture toughness is almost constant regardless of crack ratios. (2) The fracture toughness (J$\_$c/) and Tearing modulus (T) obtained are J$\_$c/=28.51kgf/mm, T=677.7 for base metal, J$\_$c/=31.85kgf/mm, T=742.0 for annealed metal. (3) Simpson's and McCabe's formulas which consider crack growth in estimating J integral are shown more conservative J and lower T than Rice's and Sumpter's. (4) Comparison of the prediction with the actual experimental measurements by Simpson's formula shows good agreement.

The B2-B19-B19' Transformation in Ti-(45-x)Ni-5Cu-xMn (at%) (x = 0.5-2.0) Alloys

  • Jeon, Yeong-Min;Kim, Min-Gyun;Kim, Min-Su;Lee, Yong-Hee;Im, Yeon-Min;Nam, Tae-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.24-27
    • /
    • 2011
  • Effect of substitution of Mn for Ni on transformation behavior, shape memory characteristics and superelasticity of Ti45Ni-5Cu alloy has been investigated by means of electrical resistivity measurements, X-ray diffraction, thermal cycling tests under constant load and tensile tests. The one-stage B2-B19' transformation occurred when Mn content was 0.5 at%, above which the two-stage B2-B19-B19' transformation occurred. A temperature range where the B19 martensite exists was expanded with increasing Mn content because decreasing rate of Ms (60 K / % Mn) was larger than that of Ms' (40 K / % Mn). Ti-(45-x)Ni-5Cu-xMn alloys were deformed in plastic manner with a fracture strain of 60 % ~ 32 % depending on Mn content. Clear superelasticity was found in fully annealed Ti-(45-x)Ni-5Cu-xMn alloys with Mn content more than 1.0 at%, which was ascribe to a solid solution hardening by substitution of Mn for Ni.

Transformation Behavior of Ti-(45-x)Ni-5Cu-xCr (at%) (x = 0.5-2.0) Shape Memory Alloys

  • Im, Yeon-Min;Jeon, Young-Min;Kim, Min-Su;Lee, Yong-Hee;Kim, Min-Kyun;Nam, Tae-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.28-31
    • /
    • 2011
  • Transformation behavior and shape memory characteristics of Ti-(45-x)Ni-5Cu-xCr (x=0.5-2.0) alloys have been investigated by means of electrical resistivity measurements, differential scanning calorimetry, X-ray diffraction and thermal cycling tests under constant load. Two-stage B2-B19-B19' transformation occurred in Ti-(45-x)Ni-5Cu-xCr alloys. The B2-B19 transformation was separated clearly from the B19-B19' transformation in Ti-44.0Ni-5Cu-1.0Cr and Ti-43.5Ni-5Cu-1.5Cr alloys. A temperature range where the B19 martensite exists was expanded with increasing Cr content because decreasing rate of Ms (85 K / % Cr) was larger than that of Ms' (17 K / % Cr). Ti-(45-x)Ni-5Cu-xCr alloys were deformed in plastic manner with a fracture strain of 68% ~ 43% depending on Cr content. Substitution of Cr for Ni improves the critical stress for slip deformation in a Ti-45Ni-5Cu alloy due to solid solution hardening.