Browse > Article
http://dx.doi.org/10.4313/TEEM.2011.12.1.28

Transformation Behavior of Ti-(45-x)Ni-5Cu-xCr (at%) (x = 0.5-2.0) Shape Memory Alloys  

Im, Yeon-Min (School of Materials Science and Engineering, Gyeongsang National University)
Jeon, Young-Min (School of Materials Science and Engineering, Gyeongsang National University)
Kim, Min-Su (School of Materials Science and Engineering, Gyeongsang National University)
Lee, Yong-Hee (School of Materials Science and Engineering, Gyeongsang National University)
Kim, Min-Kyun (School of Materials Science and Engineering, Gyeongsang National University)
Nam, Tae-Hyun (School of Materials Science and Engineering, Gyeongsang National University)
Publication Information
Transactions on Electrical and Electronic Materials / v.12, no.1, 2011 , pp. 28-31 More about this Journal
Abstract
Transformation behavior and shape memory characteristics of Ti-(45-x)Ni-5Cu-xCr (x=0.5-2.0) alloys have been investigated by means of electrical resistivity measurements, differential scanning calorimetry, X-ray diffraction and thermal cycling tests under constant load. Two-stage B2-B19-B19' transformation occurred in Ti-(45-x)Ni-5Cu-xCr alloys. The B2-B19 transformation was separated clearly from the B19-B19' transformation in Ti-44.0Ni-5Cu-1.0Cr and Ti-43.5Ni-5Cu-1.5Cr alloys. A temperature range where the B19 martensite exists was expanded with increasing Cr content because decreasing rate of Ms (85 K / % Cr) was larger than that of Ms' (17 K / % Cr). Ti-(45-x)Ni-5Cu-xCr alloys were deformed in plastic manner with a fracture strain of 68% ~ 43% depending on Cr content. Substitution of Cr for Ni improves the critical stress for slip deformation in a Ti-45Ni-5Cu alloy due to solid solution hardening.
Keywords
Ti-Ni-Cu-Cr alloys; B19 martensite; Workability; Transformation behavior;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 M. Matsumoto and T. Honma, Proceeding of the 1st Japan Institute of Metals International Symposium on Martensite (Kobe, Japan 1976), p. 199.
2 C. M. Hwang and C. M. Wayman, Metall. Trans. 15A, 1155 (1984) [DOI: 10.1007/bf02644710].   DOI
3 V. N. Khachin, Y. I. Paskal, V. E. Gjunter, A. A. Monasevich, and V. P. Sivokha, Phys. Met. Metall. 46, 49 (1978).
4 C. Kim and C. M. Hwang, Scripta Metall. 21, 959 (1987) [DOI: 10.1016/0036-9748(87)90133-5].   DOI   ScienceOn
5 T. H. Nam, D. W. Jung, J. S. Kim, and S. B. Kang, Mater. Lett. 52, 234 (2002) [DOI: 10.1016/s0167-577x(01)00424-4].   DOI
6 Y. Shugo, H. Hasegawa and T. Honma, Bull. Res. Inst. Mineral Dress. Metall. Tohoku Univ. 37, 79 (1981).
7 T. H. Nam, T. Saburi, Y. Kawamura, and K. Shimizu, Mater. Trans. JIM 31, 262 (1990).   DOI
8 T. H. Nam, D. W. Chung, Noh J. P., and H. W. Lee, J. Mater. Sci. 36, 4181 (2001) [DOI: 10.1023/A:1017964806065].   DOI   ScienceOn
9 T. H. Nam, J. P. Noh, S. G. Hur, J. S. Kim, and S. B. Kang, Mater. Trans. 43, 802 (2002) [DOI: 10.2320/matertrans.43.802].   DOI   ScienceOn
10 H. C. Lin, C. H. Yang, K. M. Lin, and G. K. Hsu, J. Alloys Compd. 386, 157 (2005) [DOI: 10.1016/j.jallcom.2004.05.022].   DOI   ScienceOn
11 Y. Kudoh, M. Tokonami, S. Miyazaki, and K. Otsuka, Acta Metall. 33, 2049 (1985) [DOI: 10.1016/0001-6160(85)90128-2].   DOI   ScienceOn