DOI QR코드

DOI QR Code

The B2-B19-B19' Transformation in Ti-(45-x)Ni-5Cu-xMn (at%) (x = 0.5-2.0) Alloys

  • Jeon, Yeong-Min (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Kim, Min-Gyun (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Kim, Min-Su (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Lee, Yong-Hee (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Im, Yeon-Min (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Nam, Tae-Hyun (School of Materials Science and Engineering, Gyeongsang National University)
  • Received : 2010.12.10
  • Accepted : 2010.12.27
  • Published : 2011.02.28

Abstract

Effect of substitution of Mn for Ni on transformation behavior, shape memory characteristics and superelasticity of Ti45Ni-5Cu alloy has been investigated by means of electrical resistivity measurements, X-ray diffraction, thermal cycling tests under constant load and tensile tests. The one-stage B2-B19' transformation occurred when Mn content was 0.5 at%, above which the two-stage B2-B19-B19' transformation occurred. A temperature range where the B19 martensite exists was expanded with increasing Mn content because decreasing rate of Ms (60 K / % Mn) was larger than that of Ms' (40 K / % Mn). Ti-(45-x)Ni-5Cu-xMn alloys were deformed in plastic manner with a fracture strain of 60 % ~ 32 % depending on Mn content. Clear superelasticity was found in fully annealed Ti-(45-x)Ni-5Cu-xMn alloys with Mn content more than 1.0 at%, which was ascribe to a solid solution hardening by substitution of Mn for Ni.

Keywords

References

  1. Y. Kudoh, M. Tokonami, S. Miyazaki, and K. Otsuka, Acta Metall. 33, 2049 (1985) [DOI: 10.1016/0001-6160(85)90128-2].
  2. M. Matsumoto and T. Honma, Proceeding of the 1st Japan Institute of Metals International Symposium on Martensite (Kobe, Japan 1976), p. 199.
  3. C. M. Hwang and C. M. Wayman, Metall. Trans. 15A, 1155 (1984) [DOI: 10.1007/bf02644710].
  4. V. N. Khachin, Y. I. Paskal, V. E. Gjunter, A. A. Monasevich, and V. P. Sivokha, Phys. Met. Metall. 46, 49 (1978).
  5. C. Kim and C. M. Hwang, Scripta Metall. 21, 959 (1987) [DOI: 10.1016/0036-9748(87)90133-5].
  6. T. H. Nam, D. W. Jung, J. S. Kim, and S. B. Kang, Mater. Lett. 52, 234 (2002) [DOI: 10.1016/s0167-577x(01)00424-4].
  7. Y. Shugo, H. Hasegawa, and T. Honma, Bull. Res. Inst. Mineral Dress. Metall. Tohoku Univ. 37, 79 (1981).
  8. V. N. Khachin, N. A. Matveeva, V. P. Sivokha, and D. V. Chernov, Dokl. Acad. Nauk USSR, 257, 167 (1981).
  9. T. Fukuda, T. Kakeshita, H. Houjoh, S. Shiraishi, and T. Saburi, Mater. Sci. Eng., A, 273, 166 (1999) [DOI: 10.1016/s0921-5093(99)00283-x].
  10. C. A. Yu, G. B. Cho, T. Y. Kim, and T. H. Nam, Mater. Sci. Eng. A, 438, 500 (2006) [DOI: 10.1016/j.msea.2006.02.160].
  11. J. Y. Choi, E. S. Choi, B. S. Cho, Y. S. Chung, and T. H. Nam, Physica Scripta T129, 240 (2007). https://doi.org/10.1088/0031-8949/2007/T129/054
  12. G. B. Cho, T. Y. Kim, C. A. Yu, Y. Liu, and T. H. Nam, J. Alloys Compd. 449, 129 (2007) [DOI: 10.1016/j.jallcom.2006.02.083].
  13. T. H. Nam, D. W. Jung, J. H. Kim, Y. Liu, K. W. Kim, and S. S. Jeong, J. Intell. Mater. Syst. Struct. 17, 1135 (2006) [DOI: 10.1177/1045389X06065239].