• Title/Summary/Keyword: Plastic Strain Hardening

Search Result 305, Processing Time 0.023 seconds

A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(I) : Model Development (수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(I): 모델 개발)

  • 이진선;김동수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.47-56
    • /
    • 2003
  • In this paper, the cyclic soil behavior model. which can accommodate the cyclic hardening, was developed by modifying the original parallel IWAN model. In order to consider the irrecoverable plastic strain of soil. the cyclic threshold strain, above which the backbone curve deviates from the original curve, was defined and the accumulated strain was determined by summation of the strains above the cyclic threshold in the stress-strain curve with applying Masing rule on unloading and reloading curves. The isotropic hardening elements are attached to the original parallel IWAN model and the slip stresses in the isotropic hardening elements are shown to increase according to the hardening functions. The hardening functions have a single parameter to account for the cyclic hardening and are defined by the symmetric limit cyclic loading test in forms of accumulated shear strain. The model development procedures are included in this paper and the verifications of developed model are discussed in the companion paper.

Homogenized Elastic-plastic Relation based on Thermodynamics and Strain Localization Analyses for Particulate Composite (열역학 기반 내부 변수를 이용한 균질화 탄소성 구성방정식 및 입자강화 복합재에서의 소성변형집중)

  • S. J. Yun;K. K. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.18-35
    • /
    • 2024
  • In the present work, the evolution rules for the internal variables including continuum damage factors are obtained using the thermodynamic framework, which are in turn facilitated to derive the elastic-plastic constitutive relation for the particulate composites. Using the Mori-Tanaka scheme, the homogenization on state and internal variables such as back-stress and damage factors is carried out to procure the rate independent plasticity relations. Moreover, the degradation of mechanical properties of constituents is depicted by the distinctive damages such that the phase and interfacial damages are treated individually accordingly, whereas the kinematic hardening is depicted by combining the Armstrong-Frederick and Phillips' back-stress evolutions. On the other hand, the present constitutive relation for each phase is expressed in terms of the respective damage-free effective quantities, then, followed by transformation into the damage affected overall nominal relations using the aforementioned homogenization concentration factors. An emphasis is placed on the qualitative analyses for strain localization by observing the perturbation growth instead of the conventional bifurcation analyses. It turns out that the proposed constitutive model offers a wide range of strain localization behavior depending on the evolution of various internal variable descriptions.

An Elasto-Plastic Constitutive Model for the nonlinearity at Small Strain Conditions (미소변형률 조건에서의 비선형성에 대한 탄소성 구성모델)

  • 오세붕;권기철;김동수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.351-356
    • /
    • 1999
  • An elasto-plastic constitutive model was Proposed, in which the behavior at small-to-large strain level can be modeled. From a mathematical approach it was proved that the model includes the previous successful models. The experimental results of a series of resonant column tests, torsional shear tests and triaxial tests were verified and as a result the proposed model could predict small-to-large strain behavior more consistently and accurately than the hyperbolic model and the Ramberg-Osgood model for a weathered granitic soil.

  • PDF

Effects of Hardening Models on Cyclic Deformation Behavior of Tensile Specimen and Nuclear Piping System (인장 시편 및 원자력 배관계의 반복 변형거동에 미치는 경화 모델의 영향)

  • Jeon, Da-Som;Kang, Ju-Yeon;Huh, Nam-Su;Kim, Jong-Sung;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • Recently there have been many concerns on structural integrity of nuclear piping under seismic loadings. In terms of failure of nuclear piping due to seismic loadings, an important failure mechanism is low cycle fatigue with large cyclic displacements. To investigate the effects of seismic loading on low cycle fatigue behavior of nuclear piping, the cyclic behavior of materials and nuclear piping needs to be accurately estimated. In this paper, the non-linear finite element (FE) analyses have been carried out to evaluate the effects of three different cyclic hardening models on cyclic behavior of materials and nuclear piping, such as isotropic hardening, kinematic hardening and combined hardening.

The effect of constitutive spins on finite inelastic strain simulations

  • Cho, Han Wook;Dafalias, Yannis F.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.755-765
    • /
    • 1997
  • Within the framework of anisotropic combined viscoplastic hardening formulation, accounting macroscopically for residual stress as well as texture development at finite deformations of metals, simple shear analyses for the simulation of fixed-end torsion experiments for ${\alpha}$-Fe, Al and Cu at different strain rates are reviewed with an emphasis on the role of constitutive spins. Complicated responses of the axial stresses with monotonically increasing shear deformations can be successfully described by the capacity of orthotropic hardening part, featuring tensile axial stresses either smooth or oscillatory. Temperature effect on the responses of axial stresses for Cu is investigated in relation to the distortion and orientation of yield surface. The flexibility of this combined hardening model in the simulation of finite inelastic strains is discussed with reference to the variations of constitutive spins depending upon strain rates and temperatures.

Characterization of Microstructure and Mechanical Properties of Micro-alloyed Cold Forging Steel and Product (냉간단조용 비조질강 및 성형품의 미세조직과 기계적 특성분석)

  • Suh D.W.;Lee Y.S.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.409-412
    • /
    • 2004
  • Microstructures and mechanical properties of microalloyed cold forging steel and cold forged prototype automobile part are characterized. The work hardening according to the increase of plastic strain plays a major role in increasing the tensile strength of microalloyed cold forging steel during cold forming. On the other hand, inhomogeneous distribution of plastic strain causes variations in microstructure and mechanical properties. The relation between inhomogeneous distribution of plastic strain and variations in microstructure and mechanical properties is discussed. The variation of mechanical property in cold forged automobile part is analyzed using quantitative evaluation of plastic strain from finite element method.

  • PDF

Strain Rate Dependence of Plastic Deformation Properties of Nanostructured Materials (나노구조재료의 소성변형 성질의 변형률속도 의존성)

  • Yoon Seung Chae;Kim Hyoung Seop
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.65-70
    • /
    • 2005
  • A phase mixture model was employed to simulate the deformation behaviour of metallic materials covering a wide grain size range from micrometer to nanometer scale. In this model a polycrystalline material is treated as a mixture of two phases: grain interior phase whose plastic deformation is governed by dislocation and diffusion mechanisms and grain boundary 'phase' whose plastic flow is controlled by a boundary diffusion mechanism. The main target of this study was the effect of grain size on stress and its strain rate sensitivity as well as on the strain hardening. Conventional Hall-Petch behaviour in coarse grained materials at high strain rates governed by the dislocation glide mechanism was shown to be replaced with inverse Hall-Petch behaviour in ultrafine grained materials at low strain rates, when both phases deform predominantly by diffusion controlled mechanisms. The model predictions are illustrated by examples from literature.

Changes of Low Cycle Fatigue Behavior of AI-Mg-Si Alloy with Severe Plastic Deformation and Heat Treatment (강소성 가공 및 열처리에 의한 Al-Mg-Si합금의 저주기 피로특성변화)

  • Kim, W.H.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.4
    • /
    • pp.217-222
    • /
    • 2009
  • The effects of severe plastic deformation by equal channel angular pressing (ECAP) and subsequent heat treatment on the low cycle fatigue behaviors of Al-Mg-Si alloy were investigated. The specimens which were peak aged at $175^{\circ}C$ after solution treatment showed cyclic hardening at all strain amplitudes, while the specimens ECAPed after solution treatment showed cyclic softening at all strain amplitudes during fatigue. The specimens aged at $100^{\circ}C$ after ECAP showed slight cyclic hardening. Various changes of cyclic fatigue behavior after severe plastic deformation and/or heat treatment were discussed in terms of the microstructural changes and precipitation conditions.

The deformable multilaminate for predicting the Elasto-Plastic behavior of rocks

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.201-214
    • /
    • 2016
  • In this paper, a multilaminate based model have been developed and presented to predict the strain hardening behavior of rock. In this multilaminate model, the stress-strain behavior of a material is obtained by integrating the mechanical response of an infinite number of predefined oriented planes passing through a material point. Essential features such as the variable deformations hypothesis and multilaminate model are discussed. The methodology to be discussed here is modeling of strains on the 13 laminates passing through a point in each loading step. Upon the presented methodology, more attention has been given to hardening in non-linear behaviour of rock in going from the peak to residual strengths. The predictions of the derived stress-strain model are compared to experimental results for marble, sandstone and dense Cambria sand. The comparisons demonstrate the ability of this model to reproduce accurately the mechanical behavior of rocks.

Determination of Chaboche Cyclic Combined Hardening Model for Cracked Component Analysis Using Tensile and Cyclic C(T) Test Data (표준 인장시험과 반복하중 C(T) 시험을 이용한 균열해석에서의 Chaboche 복합경화 모델 결정법)

  • Hwang, Jin Ha;Kim, Hune Tae;Ryu, Ho Wan;Kim, Yun Jae;Kim, Jin Weon;Kweon, Hyeong Do
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.31-39
    • /
    • 2019
  • Cracked component analysis is needed for structural integrity analysis under seismic loading. Under large amplitude cyclic loading conditions, the change in material properties can be complex, depending on the magnitude of plastic strain. Therefore the cracked component analysis under cyclic loading should consider appropriate cyclic hardening model. This study introduces a procedure for determining an appropriate cyclic hardening model for cracked component analysis. The test material was nuclear-grade TP316 stainless steel. The material cyclic hardening was simulated using the Chaboche combined hardening model. The kinematic hardening model was determined from standard tensile test to cover the high and wide strain range. The isotropic hardening model was determined by simulating C(T) test under cyclic loading using ABAQUS debonding analysis. The suitability of the material hardening model was verified by comparing load-displacement curves of cyclic C(T) tests under different load ratios.