Browse > Article
http://dx.doi.org/10.5228/KSPP.2005.14.1.065

Strain Rate Dependence of Plastic Deformation Properties of Nanostructured Materials  

Yoon Seung Chae (충남대학교 대학원 금속공학과)
Kim Hyoung Seop (충남대학교 신소재공학부)
Publication Information
Transactions of Materials Processing / v.14, no.1, 2005 , pp. 65-70 More about this Journal
Abstract
A phase mixture model was employed to simulate the deformation behaviour of metallic materials covering a wide grain size range from micrometer to nanometer scale. In this model a polycrystalline material is treated as a mixture of two phases: grain interior phase whose plastic deformation is governed by dislocation and diffusion mechanisms and grain boundary 'phase' whose plastic flow is controlled by a boundary diffusion mechanism. The main target of this study was the effect of grain size on stress and its strain rate sensitivity as well as on the strain hardening. Conventional Hall-Petch behaviour in coarse grained materials at high strain rates governed by the dislocation glide mechanism was shown to be replaced with inverse Hall-Petch behaviour in ultrafine grained materials at low strain rates, when both phases deform predominantly by diffusion controlled mechanisms. The model predictions are illustrated by examples from literature.
Keywords
Nanocrystalline Materials; Plastic Deformation; Modelling; Grain Boundary Diffusion; Strain Rate Sensitivity; Deformation Mechanisms; Ductility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Zhu, X. Liao, 2004, Nanostructured Metals: Retaining Ductility, Nature Mater., vol.3, pp.351-352   DOI   ScienceOn
2 H. S. Kim, Y. Estrin, 2001, Ductility of Ultrafine Grained Copper, Appl, Phys. Lett., vol.79, pp. 4155-4117
3 F. Dalla Torre, H. Van Swygenhoven, M. Victoria, 2002, Nanocrystalline Electrodeposited Ni: Microstructure and Tensile Properties, Acta Mater., vol. 50, pp. 3957-3970   DOI   ScienceOn
4 H. S. Kim, M. B. Bush, Y. Estrin, 2000, A Phase Mixture Model of a Particle Reinforced Composite with Fine Microstructure, Mater. Sci. Eng., vol. A276, pp. 175-185
5 N. Wang, Z. Wang, K. T. Aust, U. Erb, 1995, Effect of Grain Size on Mechanical Properties of Nanocrystalline Materials, Acta Metall. Mater., vol. 43, pp. 519-528   DOI   ScienceOn
6 Y. Estrin, 1996, Unified Constitutive Laws of Plastic Deformation (Krausz, A. S. and Krausz, K. Eds.), Academic Press, New York, p. 69
7 H. S. Kim, S. I. Hong, S. J. Kim, 2001, On the Rule of Mixtures for Predicting the Mechanical Properties of Composites with Homogeneously Distributed Soft and Hard Particles, J. Mater. Proc. Techn., vol. 112, pp. 109-113
8 A. H. Chokshi, A. Rosen, J. Karch, H. Gleiter, 1989, On the Validity of the Hall-Petch Relationship in Nanocrystalline Materials, Scripta Metall., vol. 23, pp. 1679-1683   DOI   ScienceOn
9 R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, 2003, Some Critical Experiments on the Strain-Rate Sensitivity of Nanocrystalline Nickel, Acta Mater., vol. 51, pp. 5159-5172   DOI   ScienceOn
10 L. Lu, M. L. Sui, K. Lu, 2000, Superplastic Extensibility of Nanocrystalline Copper at Room Temperature, Science, vol.287, pp.1463-1466   DOI   ScienceOn
11 W. Y. Wang, M. Chen, F. Zhou, E. Ma, 2002, High Tensile Ductility in a Nanostructured Metal, Nature, vol.419, pp.912-914   DOI   ScienceOn
12 V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, H. Gleiter, 2002, Dislocation Processes in the Deformation of Nanocrystalline Aluminium by Molecular-Dynamics Simulation, Nature Mater., vol.1, pp. 45-49
13 Y. M. Wang, E. Ma, 2004, Three Strategies to Achieve Unif orm Tensile Deformation in a Nanostructured Metal, Acta Mater., vol.52, pp. 1699-1709   DOI   ScienceOn
14 H. S. Kim, Y. Estrin, M. B. Bush, 2000, Plastic Deformation Behaviour of Fine-Grained Materials, Acta Mater., vol.48, pp.493-504   DOI   ScienceOn
15 D. G. Morris, 1998, Mechanical Behaviour of Nanostructured Materials, Materials Science Foundations, vol.2 Trans Tech Publications Ltd, Switzerland
16 V. Yamakov, D. Wolf, S. R. Phillpot, H. Gleiter, 2002, Grain-Boundary Diffusion Creep in Nano-crystalline Palladium by Molecular-Dynamics Simulation, Acta Mater., vol.50, pp. 61-73   DOI   ScienceOn
17 H. S. Kim, 1998, A Composite Model for Mechanical Properties of Nanocrystalline Materials, Scripta Mater., vol.39, pp. I 057-1061
18 H. S. Kim, M. B. Bush, 1999, The Effects of Grain Size and Porosity on The Elastic Modulus of Nanocrystalline Materials, Nanostruct. Mater., vol.11, pp. 361-367   DOI   ScienceOn
19 R. Z. Valiev, 2002, Materials Science: Nanomaterial Advantage, Nature, vol.419, pp.887-888   DOI   ScienceOn
20 R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, 2002, Paradox of Strength and Ductility in Metals Processed by Severe Plastic Deformation, J. Mater. Res., vol.17, pp.5-8   DOI   ScienceOn