• Title/Summary/Keyword: Plasma-cell interaction

Search Result 53, Processing Time 0.195 seconds

Assessing the Nano-Dynamics of the Cell Surface

  • Bae, Chil-Man;Park, Ik-Keun;Butler, Peter J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.263-268
    • /
    • 2012
  • It is important to know the mechanism of cell membrane fluctuation because it can be readout for the nanomechanical interaction between cytoskeleton and plasma membrane. Traditional techniques, however, have drawbacks such as probe contact with the cell surface, complicate analysis, and limit spatial and temporal resolution. In this study, we developed a new system for non-contact measurement of nano-scale localized-cell surface dynamics using modified-scanning ion-conductance microscopy. With 2 nm resolution, we determined that endothelial cells have local membrane fluctuations of ~20 nm, actin depolymerization causes increase in fluctuation amplitude, and ATP depletion abolishes all membrane fluctuations.

A Cell-based Method to Monitor the Interaction between Hepatitis B Virus Capsid and Surface Proteins

  • Kim, Yun-Kyoung;Oh, Soo-Jin;Jin, Bong-Suk;Park, Chan-Hoo;Jeon, Hye Sung;Boo, Doo-Wan;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.577-581
    • /
    • 2009
  • Interactions between the surface and capsid proteins of the hepatitis B virus (HBV) are critical for the assembly of virus particles. In this study, we developed a cell-based method to visualize the interactions between the capsid and surface proteins of HBV. Capsid-GFP, a capsid protein fused to a green fluorescence protein (GFP), forms nucleocapsid-like structures in the cytoplasm of mammalian cells. It relocates to the plasma membranes in cells expressing PH-PreS, a fusion protein consisting of the PreS region of the HBV surface protein and the PH domain of PLC-$\gamma$. Membrane localization of the capsid-GFP in these cells is prevented by an inhibitory peptide that blocks the interaction between the capsid and surface proteins. This dynamic localization of capsid-GFP is applicable for screening compounds that may potentially inhibit or prevent the assembly process of HBV particles.

Adhesion of Human Osteoblasts Cell on CrN Thin Film Deposited by Cathodic Arc Plasma Deposition

  • Pham, Vuong-Hung;Kim, Sun-Kyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.203-207
    • /
    • 2009
  • Interaction between human osteoblast (hFOB 1.19) and CrN films was conducted in vitro. CrN films were produced by cathodic arc plasma deposition. The surface was characterized by atomic force microscopy (AFM). CrN films, glass substrates and TiN films were cultured with human osteoblasts for 48 and 72 hours. Actin stress fiber patterns and cell adhesion of osteoblasts were found less organized and weak on CrN films compared to those on the glass substrates and the TiN films. Human osteoblasts also showed less proliferation and less distributed microtubule on CrN films compared to those on glass substrates and TiN films. Focal contact adhesion was not observed in the cells cultured on CrN films, whereas focal contact adhesion was observed well in the cells cultured on glass substrates and TiN films. As a result, the CrN film is a potential candidate as a surface coating to be used for implantable devices which requires minimal cellular adhesion.

Adhesion of Human Osteoblasts Cell on TiN Thin Film Deposited by Cathodic Arc Plasma Deposition

  • Pham, Vuong Hung;Kim, Sun-Kyu;Le, Vinh Van;Kwon, Byoung-Se
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.264-268
    • /
    • 2008
  • Interaction between human osteoblast and TiN films was conducted in vitro. TiN films were produced by cathodic arc plasma deposition. The surface was characterized by atomic force microscopy (AFM). TiN films, glass substrates and Ti films were cultured with human osteoblasts for 48 and 72 h hours. Actin stress fiber patterns and microtubules of osteoblasts were found slightly more organized and distributed on TiN films compared to those on the Ti films and the glass substrates. Human osteoblasts also showed slightly higher cell attachment, proliferation, and focal contact adhesion on TiN films compared to those on Ti films and glass substrates. Our results demonstrated that TiN films showed slightly better cellular adhesion of osteoblasts than Ti films and glass substrates in a short-time culture period.

Development of New Etching Algorithm for Ultra Large Scale Integrated Circuit and Application of ICP(Inductive Coupled Plasma) Etcher (초미세 공정에 적합한 ICP(Inductive Coupled Plasma) 식각 알고리즘 개발 및 3차원 식각 모의실험기 개발)

  • 이영직;박수현;손명식;강정원;권오근;황호정
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.942-945
    • /
    • 1999
  • In this work, we proposed Proper etching algorithm for ultra-large scale integrated circuit device and simulated etching process using the proposed algorithm in the case of ICP (inductive coupled plasma) 〔1〕source. Until now, many algorithms for etching process simulation have been proposed such as Cell remove algorithm, String algorithm and Ray algorithm. These algorithms have several drawbacks due to analytic function; these algorithms are not appropriate for sub 0.1 ${\mu}{\textrm}{m}$ device technologies which should deal with each ion. These algorithms could not present exactly straggle and interaction between Projectile ions and could not consider reflection effects due to interactions among next projectile ions, reflected ions and sputtering ions, simultaneously In order to apply ULSI process simulation, algorithm considering above mentioned interactions at the same time is needed. Proposed algorithm calculates interactions both in plasma source region and in target material region, and uses BCA (binary collision approximation4〕method when ion impact on target material surface. Proposed algorithm considers the interaction between source ions in sheath region (from Quartz region to substrate region). After the collision between target and ion, reflected ion collides next projectile ion or sputtered atoms. In ICP etching, because the main mechanism is sputtering, both SiO$_2$ and Si can be etched. Therefore, to obtain etching profiles, mask thickness and mask composition must be considered. Since we consider both SiO$_2$ etching and Si etching, it is possible to predict the thickness of SiO$_2$ for etching of ULSI.

  • PDF

Role of oxygen in plasma induced chemical reactions in solution

  • Ki, Se Hoon;Uhm, Han Sup;Kim, Minsu;Baik, Ku Youn;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.208.2-208.2
    • /
    • 2016
  • Many researchers have paid attention to the studies on the interaction between non-thermal plasma and aqueous solutions for biomedical applications. The gas composition in the plasma is very important. Oxygen and nitrogen are the main gases of interest in biological applications. Especially, we focus on the oxygen concentration. In this experiment, we studied the role of oxygen concentration in plasma induced chemical reactions in solution. At first, the amount of ions are measured according to changing the oxygen concentration. And we checked the relationship between these ions and pH value. Secondly, when the oxygen concentration is changed, it identified the type and amount of radical generated by the plasma. In order to confirm the effect of these chemical property change to biological material, hemoglobin and RBCs are chosen. RBCs are one of the common basic biological cells. Thirdly, when plasma treated according to oxygen concentration in nitrogen feeding gas, oxidation of hemoglobin and RBC is checked. Finally, membrane oxidation of RBC is measured to examine the relation between hemoglobin oxidation and membrane damage through relative hemolysis and Young's modulus. Our results suggest that reactive species generated by the plasma differsdepending on the oxygen concentration changes. The pH values are decreased when oxygen concentration increased. OH decrease and NO increase are also observed. These reactive species makes change of chemical properties of solution. We also able to confirm that the difference in these reactive species to affect the oxidation of the Hb and RBCs. The Hb and RBCs are more oxidized with the high oxygen concentration conditions. But membrane is damaged more by plasma treatment with only nitrogen gas. It is shown that red blood cells membrane damage and oxidation of hemoglobin are not directly related.

  • PDF

Nickel Toxicity and Its Interaction with Zinc, Copper and Lead in Growing Chicks (초생추에서의 니켈의 독성과 아연·구리 및 납과의 상호작용)

  • Park, Jun-hong;Kim, Chun-su
    • Korean Journal of Veterinary Research
    • /
    • v.25 no.2
    • /
    • pp.145-148
    • /
    • 1985
  • Nickel toxicity and interactions of nickel with zinc, copper, and lead were studied in glowing chicks fed supplemented diet. Feed intake and growth rate of the chick were reduced by 250mg nickel as a sulfate salt per kg of feed. The toxicity of nickel was decreased by zinc or copper supplementation, but not lead. High nickel feed increased nickel level in kidney and decreased zinc levels in tibia and plasma. However, low zinc levels in tibia and in plasma were reversed by zinc supplementation. Hemoglobin, packed cell volume, and aortic elastin content were increased in chicks fed nickel. These results suggest that nickel toxicity is induced by interference with zinc metabolism.

  • PDF

Prediction of hub genes of Alzheimer's disease using a protein interaction network and functional enrichment analysis

  • Wee, Jia Jin;Kumar, Suresh
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.39.1-39.8
    • /
    • 2020
  • Alzheimer's disease (AD) is a chronic, progressive brain disorder that slowly destroys affected individuals' memory and reasoning faculties, and consequently, their ability to perform the simplest tasks. This study investigated the hub genes of AD. Proteins interact with other proteins and non-protein molecules, and these interactions play an important role in understanding protein function. Computational methods are useful for understanding biological problems, in particular, network analyses of protein-protein interactions. Through a protein network analysis, we identified the following top 10 hub genes associated with AD: PTGER3, C3AR1, NPY, ADCY2, CXCL12, CCR5, MTNR1A, CNR2, GRM2, and CXCL8. Through gene enrichment, it was identified that most gene functions could be classified as integral to the plasma membrane, G-protein coupled receptor activity, and cell communication under gene ontology, as well as involvement in signal transduction pathways. Based on the convergent functional genomics ranking, the prioritized genes were NPY, CXCL12, CCR5, and CNR2.

Analysis of the Molecular Event of ICAM-1 Interaction with LFA-1 During Leukocyte Adhesion Using a Reconstituted Mammalian Cell Expression Model

  • Han, Weon-Cheol;Kim, Kwon-Seop;Park, Jae-Seung;Hwang, Sung-Yeoun;Moon, Hyung-Bae;Chung, Hun-Taeg;Jun, Chang-Duk
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.253-262
    • /
    • 2001
  • Ligand-receptor clustering event is the most important step in leukocyte adhesion and spreading on endothelial cells. Intercellular adhesion molecule-1 (ICAM-1) has been shown to enhance leukocyte adhesion, but the molecular event during the process of adhesion is unclear. To visualize the dynamics of ICAM-1 movement during adhesion, we have engineered stable Chinese hamster ovary cell lines expressing ICAM-1 fused to a green fluorescent protein (IC1_GFP/CHO) and examined them under the fluorescence microscopy. The transfection of IC1_GFP alone in these cells was sufficient to support the adhesion of K562 cells that express $\alpha$L$\beta$2 (LFA-1) integrin stimulated by CBR LFA-1/2 mAb. This phenomenon was mediated by ICAM-1-LFA-1 interactions, as an mAb that specifically inhibits ICAM-1-LFA-1 interaction (RRl/l) completely abolished the adhesion of LFA-1* cells to IC1_ GFP/CHO cells. We found that the characteristic of adhesion was followed almost immediately (~10 min) by the rapid accumulation of ICAM-1 on CHO cells at a tight interface between the two cells. Interestingly, ICI_GFP/CHO cells projected plasma membrane and encircled approximately half surface of LFA-1+ cells, as defined by confocal microscopy. This unusual phenomenon was also confirmed on HUVEC after adhesion of LFA-1* cells. Neither cytochalasin D nor 2,3-butanedione 2-monoxime an inhibitor of myosin light chain kinase blocked LFA-1-mediated ICAM-1 clustering, indicating that actin cytoskeleton and myosin-dependent contractility are not necessary for ICAM-1 clustering. Taken together, we suggest that leukocyte adhesion to endothelial cells induces specialized form of ICAM-1 clustering that is distinct from immunological synapse mediated by T cell interaction with antigen presenting cells.

  • PDF

Determination of Monoglycoceramides in Biological Samples using Enzymatic Deacylation and Reverse-phase HPLC (역상HPLC컬럼을 이용한 생체 내 단당세라마이드 분석)

  • Choi, Mi-Hwa;Choi, Kyeong-Mi;Ji, So-Young;Lee, Youn-Sun;Cho, Ju-Hyun;Lee, Yong-Moon;Yun, Yeo-Pyo;Yoo, Hwan-Soo
    • YAKHAK HOEJI
    • /
    • v.54 no.5
    • /
    • pp.354-361
    • /
    • 2010
  • Glycosphingolipids are structural components of mammalian cell membranes and are involved in essential cellular physiology such as cell-cell interaction, recognition, transmembrane signaling, proliferation and cell death. In this study, the simple quantitative method of monoglycoceramides-containing glucosylceramide and galactosylceramide was developed. The glycosylceramides extracted from culture cells and rat plasma were resolved by TLC, deacylated by SCDase and analyzed by HPLC-fluorescence detector at an excitation wavelength of 340 nm and an emission wavelength of 455 nm. Limit of detection was approximately 0.1 pmol and limit of quantification was about 1 pmol for both monoglycoceramide standards. The recoveries of standard glucosylceramides from intra- and inter-day assays were 113.8 and 88.8% and those of galactosylceramides were 110.7 and 123.9%, respectively. The monoglycoceramide contents of SW-620 cells and rat plasma were $141.5{\pm}5$ pmol/$1{\times}10^6$ cells and $3.9{\pm}0.3{\mu}M$, respectively. The present analytical method provides a reproducible quantification and total content of monoglycoceramide which may be as a potential biomarker for lipid imbalance-related human diseases.