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Introduction 

As people become older, many parts of the body, including the brain, change. It is also 
normal for people to become forgetful, and age-associated memory impairment is con-
sidered to be part of the aging process. However, Alzheimer’s disease (AD) is distinct 
from age-associated memory impairment, and instead is a type of dementia that causes 
problems with memory, thinking, and behavior. Hence, it is understandable that people, 
especially the elderly, are concerned about memory loss, as it is a symptom of AD. De-
mentia is known to be progressive, meaning that the condition becomes worse gradually. 
It is well known that AD has complicated and diverse pathogenic causes, including genet-
ic, environmental, and immunological factors, as well as head trauma, depression, and hy-
pertension. Moreover, genetic analyses have shown that human variations in AD can 
originate from several genes and their variants, which exert different biological functions 
in coordination to increase disease risk. AD typically occurs in elderly people (aged 65 
years and above), while an uncommon variant known as early-onset AD comprises about 
5% of AD cases [1]. As the name suggests, people with early-onset AD develop symp-
toms during their 40s and 50s, although the symptoms of both variants of AD are mostly 
the same.  
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Alzheimer’s disease (AD) is a chronic, progressive brain disorder that slowly destroys affect-
ed individuals’ memory and reasoning faculties, and consequently, their ability to perform 
the simplest tasks. This study investigated the hub genes of AD. Proteins interact with oth-
er proteins and non-protein molecules, and these interactions play an important role in 
understanding protein function. Computational methods are useful for understanding bio-
logical problems, in particular, network analyses of protein-protein interactions. Through a 
protein network analysis, we identified the following top 10 hub genes associated with AD: 
PTGER3, C3AR1, NPY, ADCY2, CXCL12, CCR5, MTNR1A, CNR2, GRM2, and CXCL8. Through 
gene enrichment, it was identified that most gene functions could be classified as integral 
to the plasma membrane, G-protein coupled receptor activity, and cell communication un-
der gene ontology, as well as involvement in signal transduction pathways. Based on the 
convergent functional genomics ranking, the prioritized genes were NPY, CXCL12, CCR5, 
and CNR2. 
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According to the National Institute on Aging (https://www.nia.
nih.gov/), some main characteristics of a brain with AD include 
amyloid plaques, neurofibrillary tangles, and chronic inflamma-
tion [2]. The amyloid plaques refer to beta-amyloid peptide (Aβ) 
which are the key components of amyloid plaques in brains affect-
ed by AD [3,4]. Abnormal levels and accumulation of Aβ form 
plaques that disrupt cell function. A similar process of unusual ac-
cumulations accounts for neurofibrillary tangles, which are driven 
by the intraneuronal accumulation of tau protein, which otherwise 
functions to stabilize microtubules, and cause AD [5,6]. Chronic 
inflammation is also linked to AD through the dysfunction of mi-
croglia in the central nervous system (CNS), which maintain ho-
meostasis in the brain. The inability of microglia to function caus-
es chronic inflammation. 

Previous research has determined that carriers of the APOE-e4 
risk gene have a higher risk of AD [7], and it is estimated that 
40%–65% of people with AD have that gene variant. Previous 
studies have mostly focused on gene regulatory networks in the 
late onset of AD [8] and the identification of active transcription 
factors by analyzing miRNA regulatory pathways [9]. To explore 
the molecular changes underlying AD, several genome-wide ex-
pression profiling experiments have been performed on the post-
mortem brain tissues of AD patients. However, the precise patho-
genesis of AD remains unknown, and no effective treatment and 
prevention approaches are feasible. Apart from determining the 
pathways involved in AD pathogenesis, detailed analyses of possi-
ble candidate genes might lead to the identification of new strate-
gies for predictive or diagnostic AD testing. In this study, we used a 
comprehensive database, DisGeNET, which includes information 
on all the genes related to AD to identify the hub genes involved in 
the disease. This study aimed to identify the hub genes involved in 
AD via protein-protein interactions. 

Methods 

Protein-protein interaction data collection 
DisGeNET (https://www.disgenet.org/) [10] is a database con-
taining information about human genes and variants. The data in 
DisGeNET are drawn from sources such as the scientific literature, 
animal models, and expertly curated repositories. Using the search 
tool in DisGeNET, the name of the disease (AD) was entered as a 
search query while choosing the disease search button. Then, the 
option “Summary of Gene-Disease Associations” was selected. A 
summary of all genes’ information, such as the HGNC gene sym-
bol, UniProt ID, and protein class, was displayed. All of this infor-
mation was downloaded in a Microsoft Excel file. 

Network construction and analysis 
For this study, Cytoscape (https://cytoscape.org/) [11], an open-
source software project, was used to construct the network by en-
tering all the UniProt IDs [12] as search queries, while using the 
Search Tool for the Retrieval of Interacting Genes (STRING) for 
protein queries. STRING (https://string-db.org/) [13] is a data-
base that contains information on known and predicted pro-
tein-protein interactions. Ambiguous terms were resolved by set-
ting the confidence (score) cutoff to 0.4 and their maximum addi-
tional interactors to 0 to import the network. 

Hub gene identification 
To determine the potential hub genes of AD, CytoHubba [14] was 
used to calculate the score for each node. This tool uses the maxi-
mal clique centrality (MCC) algorithm to show the top 10 ranked 
nodes, which could be the potential top 10 hub genes of AD. The 
top 10 genes were further analyzed for gene enrichment.  

Functional enrichment of hub genes  
FunRich (http://www.funrich.org/) [15] was used for a function-
al enrichment and interaction network analysis of genes and pro-
teins, using the gene ID of the top 10 genes. When applying the 
search, the analysis tab was selected and the bar graphs for four as-
pects (cellular component, molecular function, biological process, 
and biological pathway) were viewed, with the first six items of 
each category being shown on the chart. 

Gene prioritization using the AlzData database 
AlzData is an integrated AD database that uses high-throughput 
omics data such as the results of genome-wide association studies 
(GWAS), whole-exome sequencing, transcriptome analysis, and 
proteomics to generate a prioritized gene list. We used this data-
base to prioritize the top 10 hub genes identified. 

Results and Discussion 

In the data downloaded from DisGeNET (accessed December 
2019), there were 1981 genes involved in AD (Supplementary Ta-
ble 1). A protein-protein interaction network was created by que-
rying the STRING database for gene symbols with a confidence 
score of 0.4 to avoid false positives. The network of these genes 
had 1922 nodes and 57,617 edges, as shown in Fig. 1. Proteins 
with higher degrees in the network (hub genes) are more likely to 
be essential proteins. CytoHubba uses 11 methods to retrieve the 
top-ranked nodes. In CytoHubba, the MCC method captures 
more essential proteins in the top-ranked list in both high-degree 
and low-degree proteins. The top 10 nodes selected by MCC were 
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Fig. 2 shows that the highest percentage of these genes was 
found at the plasma membrane, and including genes integral to the 
plasma membrane. The extracellular component accounted for 
the lowest percentage of AD hub genes.

Regarding the molecular function of the AD hub genes (Fig. 3), 
most of the genes were related to G-protein coupled receptor 
(GPCR) activity, and were rarely involved in other activities such 
as cytokine receptor, chemokine, and adenylate cyclase activity. 

In terms of biological processes (Fig. 4), most of these hub genes 
were involved in signal transduction and cell communication pro-
cesses, rather than other processes such as the immune response 
or other unknown processes. 

Fig. 5 shows the biological pathways of the hub genes. Most of 
these genes are involved in signal transduction and signaling by 
GPCR, as well as the class A/1 (rhodopsin-like receptors) path-
way, peptide ligand-binding receptors, and chemokine receptors. 

PTGER3 and prostaglandin E2 are derived from the metabo-
lism of arachidonic acid by cyclooxygenases in the cyclooxygenase 
pathway. This protein is the main neuroinflammatory molecule 
[16], and its receptor EP3 subtype is highly expressed in the brain. 
Studies have shown that activation of the EP3 receptor can reduce 
or suppress cyclic adenosine monophosphate (cAMP) formation 
[17]. This affects the microglia, thereby causing many brain dis-
eases including AD. 

C3AR1, or complement C3a receptor 1, is another gene in-
volved in AD. C3a is an anaphylatoxin released during activation 
of the complement system. The C3AR1 gene encodes the orphan 
GPCR for C3a. It also has essential functions in the immune re-

Fig. 1. Overview of the protein-protein interaction network created 
using the STRING 10.0 database and Cytoscape software. The 
network has 1922 nodes and 57,617 edges. The analysis parameters 
are based on experiments, co-expression, and text mining with a 0.40 
confidence score. The red circular nodes represent the hub genes 
interacting with other Alzheimer's disease-associated genes, which 
are shown as small green circular nodes.
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Fig. 2. Cellular components of Alzheimer's disease hub genes.

all highly essential, meaning that these genes could be potential 
hub genes. These hub genes, by gene ID, were prostaglandin E re-
ceptor 3 (PTGER3), C3AR1, NPY, ADCY2, CXCL12, CCR5, MT-
NR1A, CNR2, GRM2, and CXCL8. The results of the gene enrich-
ment analysis for cellular components (Fig. 2), molecular function 
(Fig. 3), biological processes (Fig. 4), and biological pathways 
(Fig. 5) were displayed in the bar graphs. 
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Molecular function of the top 10 Alzheimer's disease–related proteins
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Fig. 3. Molecular functions of Alzheimer's disease hub genes.

Biological process of the top 10 Alzheimer's disease–related proteins
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Fig. 4. Biological processes of Alzheimer's disease hub genes.

sponse and host defense. A study has shown the importance of ac-
tivation of the C3-C3aR network in mediating neuroinflammation 
and tau pathology [6]. The tau protein is a key protein that has 
been implicated in many neurodegenerative diseases such as AD 
and Parkinson disease. 

A widely expressed gene in the CNS, NPY encodes neuropep-
tide Y. Neuropeptides are signaling molecules that influence brain 
activity in specific ways. They are involved in the pathophysiology 
of AD, and those with AD were found to have notably lower plas-
ma levels of neuropeptide Y than healthy individuals [18]. ADCY2 
encodes the protein adenylate cyclase 2. This, according to the 
NCBI, is a membrane-associated enzyme that catalyzes the forma-
tion of cAMP, which is a messenger for intracellular signal induc-
tion. A study reported that in patients with AD, cAMP activity was 

higher in cerebral microvessels than in healthy individuals [19]. 
The CXCL12 gene encodes the chemokine protein named 

C-X-C motif chemokine 12, which is a member of the intracrine 
family of stromal cell-derived chemokines and is involved in the 
CXCL12-CXCL4 pathway. This molecule regulates neuronal ex-
citability and synaptic transmission [20]. A test conducted using a 
mouse model [21], proved that patients with AD had reduced 
amounts of CXCL12. This, in turn, is linked to the fact that these 
patients have impaired learning and memory, which is also a symp-
tom of AD. The C-C chemokine receptor family is a main inflam-
matory receptor family that has been found to be involved in AD 
[22]. CCR5 or C-C motif chemokine receptor 5 is one such re-
ceptor. Many studies have demonstrated upregulation of this 
chemokine receptor in patients with AD, and it has been reported 
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to recruit microglia and to cause accumulations of microglia in se-
nile plaques [23], thereby accelerating AD development [22]. 

MTNR1A encodes melatonin receptor 1A. Melatonin is a hor-
mone that is released in the pineal gland and regulates the sleep-
wake cycle. Furthermore, melatonin has been reported to have 
neuroprotective and anti-amyloidogenic effects, as it reduced Aβ 
production in multiple neuronal cell lines [3]. As people age, the 
secretion of this hormone decreases, and low levels of melatonin 
contribute to aging. 

The endocannabinoid system (ECS) comprises endocannabi-
noids, which are endogenous lipid-based retrograde neurotrans-
mitters that bind to cannabinoid receptors. The ECS is involved in 
regulating physiological and cognitive processes, including include 
memory. One of the key receptors, cannabinoid receptor 2, is en-
coded by CNR2. Imbalances in the ECS, including elevated ex-
pression of glial cannabinoid receptor 2, in AD models suggest its 
potential role in inflammatory and neuroprotective processes [24]. 

GRM2, which stands for glutamate metabotropic receptor 2, en-
codes a protein named metabotropic glutamate receptor 2 
(mGluR2). Glutamate is the main excitatory neurotransmitter in 
the CNS, and mGluR2 modulates rapid synaptic transmission in 
the CNS via controlled release of the excitatory amino acid gluta-

mate [25]. Altered glutamatergic synaptic transmission is a key 
event in the development of AD. 

CXCL8 encodes C-X-C motif chemokine ligand 8, which is a 
member of the CXC chemokine family that is also known as inter-
leukin 8 (IL-8). Inflammatory processes have been found to be in-
volved in neurodegenerative disorders such as AD, and the in-
volvement of chemokines such as IL-8 has been reported to be in-
volved in these inflammatory processes [26]. 

We used the convergent functional genomics (CFG) ranking for 
target genes available in the AlzData database. AlzData (http://
www.alzdata.org/) integrates five lines of evidence associated with 
AD. One CFG point is assigned for each piece of evidence (e.g., 
expression of the target gene is regulated by AD genetic variants in 
GWAS; the target gene has significant physical interactions with 
APP, PSEN1, PSEN2, APOE, or MAPT; the target gene is differ-
entially expressed in AD mouse models before AD pathology 
emergence; the target gene expression is correlated with AD pa-
thology in Aβ-line AD mouse models and tau line AD mouse 
models). The number of CFG points ranges from 0 to 5. Accord-
ing to the CFG ranking, the top four genes (with 4 points each) 
were NPY, CXCL12, CCR5, and CNR2, and the genes in second 
place (with 2 points each) were PTGER3, MTNR1A, and GRM2 
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Fig. 5. Biological pathways of Alzheimer's disease hub genes. GPCR, G-protein coupled receptor.
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(Table 1). Several approaches have been used in previous research 
to identify potential target genes, such as ZFHX3, ERBB2, ERBB4, 
OCT3, MIF, CDK13, and GPI [27-33]. The most recent gene ex-
pression analysis conducted by Yan et al. [34] identified the fol-
lowing hub genes: CDC42, VEGFA, BDNF, PDYN, CALB, TH, 
CACNA1A, OXT, CD44, and TAC1. The genes identified by Wu 
et al. [35] were ITGB5, RPH3A, GNAS, and THY1. Thus, the 
present study found a few previously unreported novel hub genes, 
as follows: PTGER3, C3AR1, NPY, ADCY2, CXCL12, CCR5, MT-
NR1A, CNR2, GRM2, and CXCL8. The priority genes were iden-
tified as NPY, CXCL12, CCR5, and CNR2 based on the CFG 
ranking. 

Protein-protein interactions are important for understanding 
protein function and behavior. In this study, we identified 10 hub 
genes of AD. The results show that most of these genes encode re-
ceptor proteins that are involved in biological pathways in the plas-
ma membrane. The hub genes identified through a network analy-
sis can be used as targets to suppress AD in patients. Our analysis 
can shed some light on a deeper understanding of the fundamental 
molecular pathways and key molecular players of AD and offers a 
new point of view for researchers studying the causes of AD. 
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