• Title/Summary/Keyword: Plasma spray deposition

검색결과 36건 처리시간 0.032초

다꾸찌방법에 의한 Ni-5%Al 합금 분말의 플라즈마 용사코팅 조건의 최적화 (Optimization of the Plasma Spray Coating Parameters of Ni-5%Al Alloy Powder Using the Taguchi Experimental Method)

  • 이형근
    • Journal of Welding and Joining
    • /
    • 제20권5호
    • /
    • pp.120-126
    • /
    • 2002
  • Ni-5%Al alloy powder is widely used as the bond coating powder to improve the adhesive strength between the substrate and coating. The important properties in the bond coating are the deposition efficiency and surface roughness. In this study, it was tried to optimize the plasma spray parameters to maximize the deposition efficiency and surface roughness. In the first step, spray current and hydrogen gas flow rate were optimized in order to increase the deposition efficiency. In the next step, the seven plasma spray variables were selected and optimized to improve both the deposition efficiency and surface roughness using the Taguchi experimental method. By these optimization, the deposition efficiency was improved from about 10 % at the frist time to 51.2 % by the optimization of spray current and hydrogen gas flow rate and finally to 65.2 % by the Taguchi experimental method. The average surface roughness was increased from about $12.9\mu\textrm{m}$ to $15.4\mu\textrm{m}$.

실험계획법에 의한 알루미나 세라믹의 플라즈마 용사코팅 최적화 (Optimization of Plasma Spray Coating Parameters of Alumina Ceramic by Taguchi Experimental Method)

  • 이형근;김대훈;윤충섭
    • Journal of Welding and Joining
    • /
    • 제18권6호
    • /
    • pp.96-101
    • /
    • 2000
  • Sintered alumina ceramic substrate has been used for the insulating substrate for thick Hybrid IC owing to its cheapness and good insulating properties. Some of thick HIC's are important to eliminate the heat emitted from the parts that are mounted on the ceramic substrate. Sintered ceramic substrate can not transfer and emit the heat efficiently. It's been tried to do plasma spray coating of alumina ceramic on the metal substrates that have a good heat emission property. The most important properties to commercialize this ceramic coated metal substrate are surface roughness and deposition efficiency. In this study, plasma spray coating parameters are optimized to minimize the surface roughness and to maximize the deposition efficiency using Taguchi experimental method. By this optimization, the deposition efficiency was greatly improved from 35% at the frist time to 75% finally.

  • PDF

NiAl Behavior at Plasma Spray Deposition

  • Orban, Radu L.;Lucaci, Mariana;Rosso, Mario;Grande, Marco Actis
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.692-693
    • /
    • 2006
  • Behavior of stoichiometric and near-stoichiometric NiAl at plasma spray deposition, without and with a bond coat, for coating layers realization on a low alloyed steel substrate, has been investigated. In all variants, NiAl particle melting and subsequent welding at the impact with substrate were observed, forming a relatively compact and adherent coating layer with the NiAl stability maintaining - all assuring the coating layer oxidation and corrosion resistance. Good results from these points of view, also validated through corrosion tests, were obtained for 45:55 Ni:Al composition without a bond coat but adopting an Ar protective surrounding of plasma jet.

  • PDF

Aluminum Nitride - Yttrium Aluminum Garnet 분말 특성과 플라즈마 용사 코팅층의 미세조직 (Microstructural Evolution of Aluminum Nitride - Yttrium Aluminum Garnet Composite Coatings by Plasma Spraying from Different Feedstock Powders)

  • 소웅섭;백경호
    • 한국재료학회지
    • /
    • 제21권2호
    • /
    • pp.106-110
    • /
    • 2011
  • A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.

친환경 자동차산업의 용사(Thermal spray)에 대한 최신 연구동향 (Recent Study of Thermal Spray for Green Automotive Industry)

  • 유호천
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.43-52
    • /
    • 2014
  • Recent developing tendency of thermal spray for green automotive industry are studied by searching of NDSL, KIPRIS, ScienceDirect and so on. Spraying techniques such as plasma spray, microwave treatment, dry-ice blasting, HVOF thermal spray, cold spraying, aerosol deposition are introduced, further more spraying materials such as nano particles, intermetallic compound, TiAlN, TiC, Si-Al alloys are investigated.

플라즈마 용사 및 전자빔 물리기상 증착법으로 제조된 4YSZ 코팅의 고온마찰마모 거동 (High Temperature Tribology Behavior of 4YSZ Coatings Fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD))

  • 양영환;박찬영;이원준;김선주;이성민;김성원;김형태;오윤석
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.258-263
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings are fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD) with top coating of thermal barrier coating (TBC). NiCrAlY based bond coat is prepared as 150 ${\mu}m$ thickness by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. Each 4YSZ top coating shows different tribological behaviors based on the inherent layer structures. 4YSZ by APS which has splat-stacked structure shows lower friction coefficient but higher wear rate than 4YSZ by EB-PVD which has columnar structure. For 4YSZ by APS, such results are expected due to the sliding wear accompanied with local delamination of splats.

Particle Deposition, PD Process - New Potential in Material Processing -

  • Fukumoto, Masahiro
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.47-48
    • /
    • 2006
  • Oridinal thermal spray process has developed into two ways, namely, temperature dominated represented by plasma spraying, and velocity dominated represented by HVOF. It is common for both that the particle materials sprayed are basically in melted or half melted condition. New process has developed recently, that is, Cold Spray and Aerosol Deposition. Particle's heating is limited in CS lower than half of the material's melting point. Moreover, exactly no heating is loaded in AD process. Through the investigation on common feature for these three spraying processes, potential of new material process - Particle Deposition, PD - is considered and proposed.

  • PDF

스프레이 코팅 기술 (Spray Coating Technology)

  • 이창희
    • 한국분무공학회지
    • /
    • 제13권4호
    • /
    • pp.193-199
    • /
    • 2008
  • Spray coating is a versatile surface modification technology in which coating is built-up based on the successive deposition of micron-scaled particles. Depending on the coating materials, the coatings can meet the required mechanical properties, corrosion resistance, and other properties of base materials. Spraying processes are mainly classified into thermal and kinetic spraying according to their bonding mechanism and deposition characteristics. Specifically, thermal spraying process can be further classified into many categories based on the design and mechanism of the process, such as frame spraying, arc spraying, atmospheric plasma spraying (APS), and high velocity oxygen-fuel (HVOF) spraying, etc. Kinetic spraying or cold gas dynamic spraying is a newly emerging coating technique which is low-temperature and high-pressure coating process. In this paper, overall view of thermal and kinetic spray coating technologies is discussed in terms of fundamentals and industrial applications. The technological characteristics and bonding mechanism of each process are introduced. Deposition behavior and properties of technologically remarkable materials are reviewed. Furthermore, industrial applications of spray coating technology and its potentials are prospected.

  • PDF

Influence of LPPS Spraying Parameters on Deposition Efficiency of Zirconia Powder

  • Shi, Jian-Min;Hu, Zhong-Yin;Huang, Jing-Qi;Ding, Chuan-Xian
    • 한국진공학회지
    • /
    • 제6권S1호
    • /
    • pp.160-165
    • /
    • 1997
  • Yttria stabilized zirconia coating is an attractive material for several engineering applications. In order to produce coatings with consistent and reliable performance it is important to understand the influence of spraying parameters on the coating properties and optimize the spraying parameters. In this paper the low pressure plasma spray(LPPS) deposition of as-received zirconia powder has been investigated using simple one-factor-at-a-time approach. The deposition efficiency was chosen to evaluate the melting characteristics of the as-received zirconia powder. The results obtained indicated that the deposition efficiency of zirconia powder is very sensitive to the spraying parameters such as plasma gas flow rate and ranges from 24% to 57% The microstructure and the phase composition of zirconia coating deposited with the different plasma spraying parameters were also examined by SEM and XRD respectively. The relationship between deposition efficiency and the microstructure of zirconia coating was discussed.

  • PDF

모사 부식 환경에서 플라즈마 아크용사에 의한 Al 코팅의 부식특성에 관한 실험적 연구 (Experimental Study on the Corrosion Behavior of Al Coatings Applied by Plasma Thermal Arc Spray under Simulated Environmental Conditions)

  • 정화랑
    • 한국건축시공학회지
    • /
    • 제23권5호
    • /
    • pp.559-570
    • /
    • 2023
  • 건설산업에서 사용되는 구조용 강재의 부식은 산업화로 인해 많은 공격적인 이온이 내포된 대기 환경에서 증가추세에 있다. 따라서 본 연구에서는 아크 및 플라즈마 아크용사로 Al 코팅을 용착하여 Cl-와 CO32-같은 공격적인 이온을 다량 함유한 Society of Automotive Engineering(SAE) J2334 용액의 모사대기환경에서 그 효과를 비교하였다. 다양한 분석기법으로 코팅 특성과 부식 메커니즘을 고찰하였다. 플라즈마 아크용사로 용착된 Al 코팅은 밀도 있고 균일하면 층층이 적층이 잘 되었고 높은 부착력이 나타났다. 이 공법으로 용착된 Al 코팅을 SAE J2334 용액에 기간별로 침지하여 측정한 개회로전위(OCP)는 아크용사로 용착된 Al 코팅보다 더 양전성(electropositive)한 값을 보여주었다. 플라즈마 아크용사는 총 임피던스가 아크용사보다 높게 나타났다. SAE J2334 용액에 23일 침지하였을 때 플라즈마 아크용사 Al 코팅의 부식속도는 아크용사에 비해 20% 감소하였다.