• 제목/요약/키워드: Plasma sintering

검색결과 519건 처리시간 0.021초

Nano-sized TiCxNy를 함유한 STS 복합체의 특성 (Characteristics of Stainless Steel Composites with Nano-sized TiCxNy)

  • 반태호;박성범;조수정;이동원;;박용일;김성진
    • 한국분말재료학회지
    • /
    • 제18권3호
    • /
    • pp.290-296
    • /
    • 2011
  • Titanium carbonitride is more perspective materials compared to titanium carbide. It can be used in tool industry and special products because of its higher strength, abrasive wear-resistance and especially its strong chemical stability at high temperatures. We produced STS+TiCxNy composite by the spark plasma sintering for higher strength and studied the characteristics. The planar and cross-sectional microstructures of the specimens were observed by scanning electron microscopy. Characterizations of the carbon and nitride phases on the surface of composite were carried out using an X-ray diffractometer. During annealing TiCxNy particles diffusion into STS 430 was observed. After annealing, sintering isolations between particles were formed. It causes decreasing of mechanical strength. In addition when annealing temperature was increased hardness increased. Heterogeneous distribution of alloying elements particles was observed. After annealing composites, highest value of hardness was 738.1 MHV.

방전플라즈마 소결법에 의해 제조된 Fe-Ni 합금의 미세조직 및 고온산화특성 (Microstructure and High Temperature Oxidation Behaviors of Fe-Ni Alloys by Spark Plasma Sintering)

  • 임채홍;박종석;양상선;윤중열;이진규
    • 한국분말재료학회지
    • /
    • 제24권1호
    • /
    • pp.53-57
    • /
    • 2017
  • In this study, we report the microstructure and the high-temperature oxidation behavior of Fe-Ni alloys by spark plasma sintering. Structural characterization is performed by scanning electron microscopy and X-ray diffraction. The oxidation behavior of Fe-Ni alloys is studied by means of a high-temperature oxidation test at $1000^{\circ}C$ in air. The effect of Ni content of Fe-Ni alloys on the microstructure and on the oxidation characteristics is investigated in detail. In the case of Fe-2Ni and Fe-5Ni alloys, the microstructure is a ferrite (${\alpha}$) phase with body centered cubic (BCC) structure, and the microstructure of Fe-10Ni and Fe-20Ni alloys is considered to be a massive martensite (${\alpha}^{\prime}$) phase with the same BCC structure as that of the ferrite phase. As the Ni content increases, the micro-Vickers hardness of the alloys also increases. It can also be seen that the oxidation resistance is improved by decreasing the thickness of the oxide film.

MA/SPS 공정에 의한 β-FeSi2 열전재료의 제조(I) -β-FeSi2상의 형성- (Preparation of β-FeSi2 Thermoelectric Materials by MA/SPS Process -Formation ofβ-FeSi2Phase-)

  • 김환태;권영순;이충효
    • 한국재료학회지
    • /
    • 제12권3호
    • /
    • pp.176-181
    • /
    • 2002
  • Fabrication of ${\beta}-FeSi_2$ was attempted by making use of the combined process of mechanical alloying (MA) and spark plasma sintering (SPS). MA was performed under the Ar gas atmosphere using mixed powders of pure iron and silicon having the mole fraction of 1:2. SPS process was performed at 800-85$0^{\circ}C$ with the applied pressure of 50MPa and the holding time was ranging from 0 to 30min. The mechanically alloyed powder by cyclic operation of rotor for 15hrs consisted of $\varepsilon$-FeSi and Si phases. When this mechanically alloyed powder was sintered by SPS process above 85$0^{\circ}C$, $\varepsilon$-FeSi and ${\alpha}-Fe_2Si_5$ phase were formed. Bulk product sintered at 82$0^{\circ}C$ for 30min consisted of ${beta}-FeSi_2$ phase with a small fraction of $\varepsilon$-FeSi and the density of sintered specimen was 75.3% theoretical density. It was considered that the MA/SPS combined process was effective for the preparation of ${\beta}-FeSi_2$ without heat treatment process after sintering.

컴퓨터 시뮬레이션에 의한 SPS의 몰드크기에 따른 SiC-ZrB2 복합체의 소결특성 연구 (A Study on Sintering Properties of a SiC-ZrB2 Composite According to Mold Size of SPS Through Computer Simulation)

  • 신용덕;이정훈;진범수;강명균
    • 전기학회논문지
    • /
    • 제61권7호
    • /
    • pp.988-991
    • /
    • 2012
  • The computer simulation was performed to confirm distribution of current and power density according to inner diameter of graphite mold of SPS(Spark Plasma Sintering). When the inner diameters of a graphite mold are varied $10mm{\Phi}$, $20mm{\Phi}$, $30mm{\Phi}$ and $40mm{\Phi}$, the more the inner diameter of graphite mold is decreased, the more the current density of punch section is increased. Because the electrical resistivity of the SiC-$ZrB_2$ specimen section($7.77{\times}10^{-4}{\Omega}{\cdot}cm$) was lower than the electrical resistivity($6.00{\times}10^{-3}{\Omega}{\cdot}cm$) of graphite section, the current density and power density of specimen section was higher than those of graphite section. It is considered that a SiC-$ZrB_2$ composite is sintered by more Joule heat of specimen section than that of mold and punch section. The current and power density distribution of a SiC-$ZrB_2$ composite can be predicted through computer simulation when SPS is conducted, and an electrical resistivity of the SiC-$ZrB_2$ composite is main element of SPS.

기계적 합금화법과 방전 플라즈마 소결법으로 제조된 Al-25Ti-8Mn 금속간 화합물의 산화 거동 (Oxidation Behavior of Al-25Ti-8Mn Intermetallic Compound Fabricated by Mechanical Alloying and Spark Plasma Sintering)

  • 최재웅;김기홍;황길호;홍석준;강성군
    • 한국재료학회지
    • /
    • 제15권7호
    • /
    • pp.439-443
    • /
    • 2005
  • The oxidation behavior and the thermal stability of nanocrystalline Al-25Ti-8Mn intermetallic compound were investigated. $Al_3Ti$ intermetallic compound, which has a potential for high temperature structural material, was fabricated by mechanical alloying(MA) with $8at.\%$ Mn to enhance the thermal stability and ductility. And Al-25Ti-8Mn intermetallic compound was sintered by spark plasma sintering(SPS) at $700^{\circ}C$. After sintering process, cubic $Ll_2$ structure was maintained without phase transformation and the grain size was about 50nm. To investigate the oxidation behavior of the specimens, thermal gravimetric analysis(TGA) was performed at 700, 800, 900, and $1000^{\circ}C$ for 24 h in $O_2$. As the temperature increased from $700^{\circ}C\;to\;900^{\circ}C$ the weight gain of specimens increased. However at $1000^{\circ}C$, unlike the oxidation behavior of $700^{\circ}C\;to\;900^{\circ}C$, the weight gain of specimen decreased drastically and the transition from linear rate region to parabolic rate region occurred rapidly due to the dense $\alpha-Al_2O_3$.

밀링 조건이 고엔트로피 합금의 미세조직 및 기계적 특성에 미치는 영향 (Influence of Milling Conditions on the Microstructural Characteristics and Mechanical Properties of Non-equiatomic High Entropy Alloy)

  • 서남혁;전준협;김광훈;박정빈;손승배;이석재
    • 한국분말재료학회지
    • /
    • 제28권2호
    • /
    • pp.103-109
    • /
    • 2021
  • High-entropy alloys have excellent mechanical properties under extreme environments, rendering them promising candidates for next-generation structural materials. It is desirable to develop non-equiatomic high-entropy alloys that do not require many expensive or heavy elements, contrary to the requirements of typical high-entropy alloys. In this study, a non-equiatomic high-entropy alloy powder Fe49.5Mn30Co10Cr10C0.5 (at.%) is prepared by high energy ball milling and fabricated by spark plasma sintering. By combining different ball milling times and ball-to-powder ratios, we attempt to find a proper mechanical alloying condition to achieve improved mechanical properties. The milled powder and sintered specimens are examined using X-ray diffraction to investigate the progress of mechanical alloying and microstructural changes. A miniature tensile specimen after sintering is used to investigate the mechanical properties. Furthermore, quantitative analysis of the microstructure is performed using electron backscatter diffraction.

분말 제조 방법에 따른 Ni-Y2O3 소결 합금의 미세 구조 및 기계적 특성 평가 (Evaluation of Microstructures and Mechanical Properties of Ni-Y2O3 Sintered Alloys Based on the Powder Preparation Methods)

  • 정건우;차지호;장민서;오민석;박제신
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.484-492
    • /
    • 2023
  • In this study, Ni-Y2O3 powder was prepared by alloying recomposition oxidation sintering (AROS), solution combustion synthesis (SCS), and conventional mechanical alloying (MA). The microstructure and mechanical properties of the alloys were investigated by spark plasma sintering (SPS). Among the Ni-Y2O3 powders synthesized by the three methods, the AROS powder had approximately 5 nm of Y2O3 crystals uniformly distributed within the Ni particles, whereas the SCS powder contained a mixture of Ni and Y2O3 nanoparticles, and the MA powder formed small Y2O3 crystals on the surface of large Ni particles by milling the mixture of Ni and Y2O3. The average grain size of Y2O3 in the sintered alloys was approximately 15 nm, with the AROS sinter having the smallest, followed by the SCS sinter at 18 nm, and the MA sinter at 22 nm. The yield strength (YS) of the SCS- and MA-sintered alloys were 1511 and 1688 MPa, respectively, which are lower than the YS value of 1697 MPa for the AROS-sintered alloys. The AROS alloy exhibited improved strength compared to the alloys fabricated by SCS and conventional MA methods, primarily because of the increased strengthening from the finer Y2O3 particles and Ni grains.

하소이트리아 소결체의 특성과 플라즈마저항성 평가 (Plasma Resistance Evaluation and Characteristics of Yttria Ceramics Sintered by Using Calcination Yttria)

  • 최진삼;;배원태
    • 한국세라믹학회지
    • /
    • 제50권5호
    • /
    • pp.348-352
    • /
    • 2013
  • The evaluation of plasma resistance and the characteristics of yttria ceramics fabricated by calcination yttria as a starting material without dopants under an oxidation atmosphere was investigated. Regardless of the starting materials, as-received, and calcined yttria powder, XRD patterns showed that all samples have $Y_2O_3$ phase. The three cycling process inhibited a large grain, which occurs frequently during the yttria sintering, and a high density ceramic with a homogeneous grain size was obtained. The grain size of the sintered ceramic was affected by the starting powders. The smaller the grain size, the larger were the Young's modulus and KIC. Compared to $Al_2O_3$ and $ZrO_2$ ceramics, yttria ceramics showed a 3 times larger plasma resistance and a 1.4~2.2 times lower weight loss during the plasma etching test, respectively.

Preparation of W-V functionally gradient material by spark plasma sintering

  • Tang, Yi;Qiu, Wenbin;Chen, Longqing;Yang, Xiaoliang;Song, Yangyipeng;Tang, Jun
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1706-1713
    • /
    • 2020
  • Functionally gradient material (FGM) is promisingly effective in mitigating the thermal stress between plasma facing materials (PFM) and structural materials. However, the corresponding research with respect to W/V FGM has not been reported yet. In this work, we firstly report the successful fabrication of W/V FGM by a combined technology of mechanical alloying (MA) and spark plasma sintering (SPS). The microhardness and microstructure of the consolidated sample were both investigated. W/V stacks show significantly enhanced microhardness (>100%) compared with pure W plate, which is beneficial to the integral strength of the hybrid structure. Furthermore, we clarify that the different ductility of W and V should be carefully considered, otherwise W/V powder might aggregate and lead to the formation of compositional segregation, and simultaneously unmask the impact of V proportion on the distribution of second phase in W-V binary alloy system. This work provides an innovative approach for obtaining W-V connections with much better performance.

Room-temperature tensile strength and thermal shock behavior of spark plasma sintered W-K-TiC alloys

  • Shi, Ke;Huang, Bo;He, Bo;Xiao, Ye;Yang, Xiaoliang;Lian, Youyun;Liu, Xiang;Tang, Jun
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.190-197
    • /
    • 2019
  • W-K-TiC alloys with different titanium carbide concentrations (0.05, 0.1, 0.25, 0.5, 1, 2) wt.% were fabricated through Mechanical Alloying and Spark Plasma Sintering. The effects of the addition of nano-scaled TiC particles on the relative density, Vickers micro-hardness, microstructure, crystal information, thermal shock resistance, and tensile strength were investigated. It is revealed that the doped TiC nano-particles located at the grain boundaries. The relative density and Vickers micro-hardness of W-K-TiC alloys was enhanced with TiC addition and the highest Vickers micro-hardness is 731.55. As the TiC addition increased from 0.05 to 2 wt%, the room-temperature tensile strength raised from 141 to 353 MPa. The grain size of the W-K-TiC alloys decreased sharply from $2.56{\mu}m$ to 330 nm with the enhanced TiC doping. The resistance to thermal shock damage of W-K-TiC alloys was improved slightly with the increased TiC addition.