Browse > Article
http://dx.doi.org/10.1016/j.net.2018.09.015

Room-temperature tensile strength and thermal shock behavior of spark plasma sintered W-K-TiC alloys  

Shi, Ke (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Huang, Bo (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
He, Bo (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Xiao, Ye (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Yang, Xiaoliang (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Lian, Youyun (Southwest Institute of Physics)
Liu, Xiang (Southwest Institute of Physics)
Tang, Jun (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Publication Information
Nuclear Engineering and Technology / v.51, no.1, 2019 , pp. 190-197 More about this Journal
Abstract
W-K-TiC alloys with different titanium carbide concentrations (0.05, 0.1, 0.25, 0.5, 1, 2) wt.% were fabricated through Mechanical Alloying and Spark Plasma Sintering. The effects of the addition of nano-scaled TiC particles on the relative density, Vickers micro-hardness, microstructure, crystal information, thermal shock resistance, and tensile strength were investigated. It is revealed that the doped TiC nano-particles located at the grain boundaries. The relative density and Vickers micro-hardness of W-K-TiC alloys was enhanced with TiC addition and the highest Vickers micro-hardness is 731.55. As the TiC addition increased from 0.05 to 2 wt%, the room-temperature tensile strength raised from 141 to 353 MPa. The grain size of the W-K-TiC alloys decreased sharply from $2.56{\mu}m$ to 330 nm with the enhanced TiC doping. The resistance to thermal shock damage of W-K-TiC alloys was improved slightly with the increased TiC addition.
Keywords
Potassium-doped tungsten; Titanium carbide; Spark plasma sintering; Tensile strength; Thermal shock;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.W. Davis, V.R. Barabash, A. Makhankov, et al., Assessment of tungsten for use in the ITER plasma facing components 1, J. Nucl. Mater. 258-263 (1998) 308-312.   DOI
2 M. Shimada, G. Cao, T. Otsuka, et al., Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten, Nucl. Fusion 55 (2015), 13008-13016(13009).   DOI
3 G. Janeschitz, Plasmaewall interaction issues in ITER, J. Nucl. Mater. 290-293 (2001) 1-11.   DOI
4 H. Bolt, V. Barabash, W. Krauss, et al., Materials for the plasma-facing components of fusion reactors, J. Nucl. Mater. 329-333 (2004) 66-73.   DOI
5 J. Linke, Plasma facing materials and components for future fusion devicesddevelopment, characterization and performance under fusion specific loading conditions, Phys. Scripta 2006 (2006) 45.   DOI
6 C.C. Ge, Z.J. Zhou, W.P. Shen, et al., Status of R&D on fusion materials in institute of nuclear materials in USTB, Fusion Eng. Des. 85 (2010) 1080-1084.   DOI
7 T. Hirai, K. Ezato, P. Majerus, ITER relevant high heat flux testing on plasma facing surfaces, Mater. Trans. 46 (2005) 412-424.   DOI
8 P. Norajitra, L.V. Boccaccini, A. Gervash, et al., Development of a helium-cooled divertor: material choice and technological studies, J. Nucl. Mater. 367-370 (2007) 1416-1421.   DOI
9 S. Lang, Q. Yan, N. Sun, et al., Microstructure, basic thermal-mechanical and Charpy impact properties of W-0.1wt.%TiC alloy via chemical method, J. Alloy. Comp. 660 (2015) 184-192.
10 M. Jochen, Linke, T. Hirai, et al., Performance of plasma-facing materials under intense thermal loads in tokamaks and stellarators, Fusion Technol. 46 (2004) 142-151.   DOI
11 D.M. Moon, R.C. Koo, Mechanism and kinetics of bubble formation in doped tungsten, Metall. Mater. Trans. B 2 (1971) 2115-2122.   DOI
12 P. Schade, 100 years of doped tungsten wire, Int. J. Refract. Metal. Hard Mater. 28 (2010) 648-660.   DOI
13 B. Huang, B. He, Y. Xiao, et al., Microstructure and bubble formation of Al-K-Si doped tungsten prepared by spark plasma sintering, Int. J. Refract. Metals Hard Mater. 54 (2016) 335-341.   DOI
14 J. Linke, T. Loewenhoff, V. Massaut, et al., Performance of different tungsten grades under transient thermal loads, Nucl. Fusion 51 (2011) 600-606.
15 G. Pintsuk, I. Uytdenhouwen, Thermo-mechanical and thermal shock characterization of potassium doped tungsten, Int. J. Refract. Metals Hard Mater. 28 (2010) 661-668.   DOI
16 X. Zhang, S. Lyu (Eds.), Variational EM Learning of DSBNs with Conditional Deep Boltzmann Machines. International Conference on Artificial Neural Networks, Springer, 2014.
17 Y. Xiao, B. Huang, B. He, et al., Effect of molybdenum doping on the microstructure, micro-hardness and thermal shock behavior of W K Mo Ti Y alloy, J. Alloy. Comp. 678 (2016) 533-540.   DOI
18 B. Huang, Y. Xiao, B. He, et al., Effect of potassium-doping on the thermal shock behavior of tungsten, Int. J. Refract. Metals Hard Mater. 51 (2015) 19-24.   DOI
19 X. Shu, H. Qiu, B. Huang, et al., Preparation and characterization of potassium doped tungsten, J. Nucl. Mater. 440 (2013) 414-419.   DOI
20 B. He, B. Huang, Y. Xiao, et al., Preparation and thermal shock characterization of yttrium doped tungsten-potassium alloy, J. Alloy. Comp. 686 (2016) 298-305.   DOI
21 G.M. Song, Y.J. Wang, Y. Zhou, Thermomechanical properties of TiC particlereinforced tungsten composites for high temperature applications, Int. J. Refract. Metals Hard Mater. 21 (2003) 1-12.   DOI
22 W. Yuan, S.K. Panigrahi, J.Q. Su, et al., Influence of grain size and texture on HallePetch relationship for a magnesium alloy, Scripta Mater. 65 (2011) 994-997.   DOI
23 R.M. German, A. Bose, S.S. Mani, Sintering time and atmosphere influences on the microstructure and mechanical properties of tungsten heavy alloys, Metall. Trans. A 23 (1992) 211-219.   DOI
24 B.P. Bewlay, C.L. Briant, The formation and the role of potassium bubbles in NS-doped tungsten, Int. J. Refract. Metals Hard Mater. 13 (1995) 137-159.   DOI
25 Y. Kitsunai, H. Kurishita, H. Kayano, et al., Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC, J. Nucl. Mater. 271-272 (1999) 423-428.   DOI
26 H. Kurishita, Y. Amano, S. Kobayashi, et al., Development of ultra-fine grained WeTiC and their mechanical properties for fusion applications, J. Nucl. Mater. 367 (2007) 1453-1457.   DOI
27 G. Pintsuk, H. Kurishita, J. Linke, et al., Thermal shock response of fine- and ultra-fine-grained tungsten-based materials, Phys. Scripta 2011 (2011) 1972-1978.
28 Z.M. Xie, R. Liu, Q.F. Fang, et al., Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten, J. Nucl. Mater. 444 (2014) 175-180.   DOI