Browse > Article
http://dx.doi.org/10.1016/j.net.2020.01.008

Preparation of W-V functionally gradient material by spark plasma sintering  

Tang, Yi (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Qiu, Wenbin (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Chen, Longqing (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Yang, Xiaoliang (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Song, Yangyipeng (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Tang, Jun (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
Publication Information
Nuclear Engineering and Technology / v.52, no.8, 2020 , pp. 1706-1713 More about this Journal
Abstract
Functionally gradient material (FGM) is promisingly effective in mitigating the thermal stress between plasma facing materials (PFM) and structural materials. However, the corresponding research with respect to W/V FGM has not been reported yet. In this work, we firstly report the successful fabrication of W/V FGM by a combined technology of mechanical alloying (MA) and spark plasma sintering (SPS). The microhardness and microstructure of the consolidated sample were both investigated. W/V stacks show significantly enhanced microhardness (>100%) compared with pure W plate, which is beneficial to the integral strength of the hybrid structure. Furthermore, we clarify that the different ductility of W and V should be carefully considered, otherwise W/V powder might aggregate and lead to the formation of compositional segregation, and simultaneously unmask the impact of V proportion on the distribution of second phase in W-V binary alloy system. This work provides an innovative approach for obtaining W-V connections with much better performance.
Keywords
Functionally gradient materials; W/V alloy; Microstructure; Microhardness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Bolt, V. Barabash, G. Federici, J. Linke, A. Loarte, J. Roth, K. Sato, Plasma facing and high heat flux materialseneeds for ITER and beyond, J. Nucl. Mater. 307 (2002) 43-52.   DOI
2 H. Matsui, K. Fukumoto, D.L. Smith, H.M. Chung, W.v. Witzenburg, S.N. Votinov, Status of vanadium alloys for fusion reactors, J. Nucl. Mater. 233-237 (1996) 92-99.   DOI
3 T. Muroga, T. Nagasaka, K. Abe, V.M. Chernov, H. Matsui, D.L. Smith, Z.-Y. Xu, S.J. Zinkle, Vanadium alloys - overview and recent results, J. Nucl. Mater. 307-311 (2002) 547-554.   DOI
4 K. Arshad, M.-Y. Zhao, Y. Yuan, Y. Zhang, Z.-H. Zhao, B. Wang, Z.-J. Zhou, G.-H. Lu, Effects of vanadium concentration on the densification, microstructures and mechanical properties of tungsten vanadium alloys, J. Nucl. Mater. 455 (2014) 96-100.   DOI
5 K. Arshad, W. Guo, J. Wang, M.-Y. Zhao, Y. Yuan, Y. Zhang, B. Wang, Z.-J. Zhou, G.-H. Lu, Influence of vanadium precursor powder size on microstructures and properties of W-V alloy, Int. J. Refract. Metals Hard Mater. 50 (2015) 59-64.   DOI
6 B. Huang, B. He, Y. Xiao, R. Ang, J. Yang, J. Liao, Y. Yang, N. Liu, D. Pan, J. Tang, Microstructure and bubble formation of Al-K-Si doped tungsten prepared by spark plasma sintering, Int. J. Refract. Metals Hard Mater. 54 (2016) 335-341.   DOI
7 Z. Zhou, Y. Ma, J. Du, J. Linke, Fabrication and characterization of ultra-fine grained tungsten by resistance sintering under ultra-high pressure, Mater. Sci. Eng. A 505 (2009) 131-135.   DOI
8 K. Arshad, M.-Y. Zhao, Y. Yuan, Y. Zhang, Z.-J. Zhou, G.-H. Lu, Thermal stability evaluation of microstructures and mechanical properties of tungsten vanadium alloys, Mod. Phys. Lett. B 28 (2014) 1450207.   DOI
9 Q. Zhang, X. Shi, H. Yang, X. Duan, Microstructure and properties of W-15Cu alloys prepared by mechanical alloying and spark plasma sintering process, J. Wuhan Univ. Technol.-Materials Sci. Ed. 23 (2008) 399-402.   DOI
10 G. Kalinin, V. Barabash, A. Cardella, J. Dietz, K. Ioki, R. Matera, R. Santoro, R. Tivey, Assessment and selection of materials for ITER in-vessel components, J. Nucl. Mater. 283 (2000) 10-19.
11 C. Linsmeier, M. Rieth, J. Aktaa, T. Chikada, A. Hoffmann, J. Hoffmann, A. Houben, H. Kurishita, X. Jin, M. Li, A. Litnovsky, S. Matsuo, A. von Müller, V. Nikolic, T. Palacios, R. Pippan, D. Qu, J. Reiser, J. Riesch, T. Shikama, R. Stieglitz, T. Weber, S. Wurster, J.H. You, Z. Zhou, Development of advanced high heat flux and plasma-facing materials, Nucl. Fusion 57 (2017), 092007.   DOI
12 H. Takatsu, ITER project and fusion technology, Nucl. Fusion 51 (2011), 094002.   DOI
13 J. Ongena, R. Koch, R. Wolf, H. Zohm, Magnetic-confinement fusion, Nat. Phys. (2016) 398-410.
14 S. Preston, I. Bretherton, C. Forty, The thermophysical and mechanical properties of the copper heat sink material intended for use in ITER, Fusion Eng. Des. 66 (2003) 441-446.   DOI
15 G. Pintsuk, S.E. Brunings, J.E. Doring, J. Linke, I. Smid, L. Xue, Development of W/Cudfunctionally graded materials, Fusion Eng. Des. 66-68 (2003) 237-240.   DOI
16 Z.-J. Zhou, J. Du, S.-X. Song, Z.-H. Zhong, C.-C. Ge, Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method, J. Alloy. Comp. 428 (2007) 146-150.   DOI
17 A. Yusefi, N. Parvin, H. Mohammadi, WCu functionally graded material: low temperature fabrication and mechanical characterization, J. Phys. Chem. Solids 115 (2018) 26-35.   DOI
18 M.M. Gasik, Micromechanical modelling of functionally graded materials, Comput. Mater. Sci. 13 (1998) 42-55.   DOI
19 F. Erdogan, Fracture mechanics of functionally graded materials, Compos. Eng. 5 (1995) 753-770.   DOI
20 Z.J. Zhou, Y.J. Yum, C.C. Ge, The recent progress of FGM on nuclear materialsdesign and fabrication of W/Cu functionally graded material high heat flux components for fusion reactor, in: Materials Science Forum, Trans Tech Publ, 2010, pp. 353-358.
21 R. Jedamzik, A. Neubrand, J. Rodel, Functionally graded materials by electrochemical processing and infiltration: application to tungsten/copper composites, J. Mater. Sci. 35 (2000) 477-486.   DOI
22 R. Liu, T. Hao, K. Wang, T. Zhang, X.P. Wang, C.S. Liu, Q.F. Fang, Microwave sintering of W/Cu functionally graded materials, J. Nucl. Mater. 431 (2012) 196-201.   DOI
23 K. Arshad, M.-Y. Zhao, Y. Yuan, Y. Zhang, Z.-H. Zhao, B. Wang, Z.-J. Zhou, G.-H. Lu, Effects of consolidation conditions on microstructures and properties of tungsten-vanadium alloy, in: Applied Sciences and Technology (IBCAST), 2014 11th International Bhurban Conference on, IEEE, 2014, pp. 12-17.
24 T. Palacios, M. Monge, J. Pastor, Tungstenevanadiumeyttria alloys for fusion power reactors (I): microstructural characterization, Int. J. Refract. Metals Hard Mater. 54 (2016) 433-438.   DOI
25 C.-C. Ge, J.-T. Li, Z.-J. Zhou, W.-B. Cao, W.-P. Shen, M.-X. Wang, N.-M. Zhang, X. Liu, Z.-Y. Xu, Development of functionally graded plasma-facing materials, J. Nucl. Mater. 283 (2000) 1116-1120.   DOI
26 M. Koizumi, FGM activities in Japan, Compos. B Eng. 28 (1997) 1-4.   DOI
27 J. Song, Y. Yu, Z. Zhuang, Y. Lian, X. Liu, Y. Qi, Preparation of W-Cu functionally graded material coated with CVD-W for plasma-facing components, J. Nucl. Mater. 442 (2013) S208-S213.   DOI
28 X. Tang, H. Zhang, D. Du, D. Qu, C. Hu, R. Xie, Y. Feng, Fabrication of W-Cu functionally graded material by spark plasma sintering method, Int. J. Refract. Metals Hard Mater. 42 (2014) 193-199.   DOI
29 Y. Itoh, M. Takahashi, H. Takano, Design of tungsten/copper graded composite for high heat flux components, Fusion Eng. Des. 31 (1996) 279-289.   DOI
30 E. Autissier, M. Richou, L. Minier, J.L. Gardarein, F. Bernard, Elaboration and thermomechanical characterization of W/Cu functionally graded materials produced by Spark Plasma Sintering for plasma facing components, Fusion Eng. Des. 98-99 (2015) 1929-1932.   DOI
31 J.M. Chen, V.M. Chernov, R.J. Kurtz, T. Muroga, Overview of the vanadium alloy researches for fusion reactors, J. Nucl. Mater. 417 (2011) 289-294.   DOI
32 N. Baluc, Materials for fusion power reactors, Plasma Phys. Control. Fusion 48 (2006) B165-B177.   DOI
33 J.M. Missiaen, J.J. Raharijaona, A. Antoni, C. Pascal, M. Richou, P. Magaud, Design of a W/steel functionally graded material for plasma facing components of DEMO, J. Nucl. Mater. 416 (2011) 262-269.   DOI
34 C. Tan, G. Wang, L. Ji, Y. Tong, X.-M. Duan, Investigation on 316L/W functionally graded materials fabricated by mechanical alloying and spark plasma sintering, J. Nucl. Mater. 469 (2016) 32-38.   DOI
35 T. Muroga, J.M. Chen, V.M. Chernov, R.J. Kurtz, M. Le Flem, Present status of vanadium alloys for fusion applications, J. Nucl. Mater. 455 (2014) 263-268.   DOI
36 R.J. Kurtz, K. Abe, V.M. Chernov, D.T. Hoelzer, H. Matsui, T. Muroga, G.R. Odette, Recent progress on development of vanadium alloys for fusion, J. Nucl. Mater. 329-333 (2004) 47-55.   DOI
37 S.A. Bartenev, A. Ciampichetti, N.G. Firsin, R.A. Forrest, B.N. Kolbasov, I.B. Kvasnitskij, P.V. Romanov, V.N. Romanovskij, M. Zucchetti, Recycling of vanadium alloys in fusion reactors, J. Nucl. Mater. 367 (2007) 892-896.   DOI