• Title/Summary/Keyword: Plasma reformer

Search Result 18, Processing Time 0.032 seconds

Characteristics of LPG fuel Reforming in Plasma Reformer for Hydrogen Production (수소 생성을 위한 플라즈마 개질기에서의 LPG 연료의 개질 특성)

  • Park, Yunhwan;Lee, Deahoon;Kim, Changup;Kang, Kernyong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.8-14
    • /
    • 2013
  • In this study, characteristics of the geometric design changes of plasma reformer for LPG fuelled vehicles were studied. To improve the yield of hydrogen, reformer 1st, and 2nd were designed. Secondary reformer compared to the primary reformer to increase the volume of the rear part of reformed gas having passed through the plasma and increased reaction time. To compare reforming results of two reformers, various experimental conditions such as, from partial oxidation to total oxidation conditions $O_2/C$ ratios, and total flow rate of 20, 30, 40, 50 lpm conditions, were varied. Results showed that with increasing $O_2/C$ ratios, LPG conversion rate increased, decreased hydrogen selectivity and hydrogen yield optimal point existed and secondary reformer 4.5 times larger than the primary reformer at the same flow rate to 4~14% increase in the yield of hydrogen.

Feasibility Study of Low NOx Combustion based on FGR using Plasma Reformer (플라즈마를 이용한 FGR 기반 저 NOx 연소 타당성 연구)

  • Kim, Kwan-Tae;Lee, Dae-Hoon;Cha, Min-Suk;Keel, Sang-In;Yun, Jin-Han;Kim, Dong-Hyun;Song, Young-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.3
    • /
    • pp.1-7
    • /
    • 2007
  • A combined hydrogen generator of plasma and catalytic reformer was developed, and was applied to stabilize unstable flame of 200,000 Kcal/hr LPG combustor. The role of the plasma reformer was to generate hydrogen in a short period and to heat-up the catalytic reformer during the start-up time. After the start-up period, the catalytic reformer generates hydrogen through steam reforming with oxygen (SRO) reactions. The maximum capacity of the hydrogen generator was enough 100 lpm to stabilize the flame of the present combustor. In order to reduce NOx and CO emissions simultaneously, 1) FGR (Flue Gas Recirculation) technique has been adopted and 2) the hydrogen was added into the fuel supplied to the combustor. Test results showed that the addition of 25% hydrogen and 30% FGR rate lead to simultaneous decrease of CO and NOx emissions. The technique developed in the present study showed good potential to replace $NH_3$ SCR technique, especially in the small-scale combustor applications.

  • PDF

Application Research on LPG Injector type Plasma Reformer (LPG 인젝터형 플라즈마 개질기 적용연구)

  • Kim, Changup;Lee, Deahoon
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • In this study, plasma reformer technology with a LPG injector was investigated. It was developed with injection of LPG fuel and air in a region where the plasma discharge to make the thermal decomposition carbon fuel and to generate additional hydrogen. As a result of reforming test, when power is 70~100W supply, about HC 0.7% of the full reformed gas and hydrogen was generated from 1.2 to 1.5 %.

Plasma Reformer for Low NOx Combustion (저 NOx 연소를 위한 플라즈마 개질기)

  • Kim, Kwan-Tae;Lee, Dae-Hoon;Cha, Min-Suk;Keel, Sang-In;Yoon, Jin-Han;Song, Young-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.187-190
    • /
    • 2007
  • A combined hydrogen generator of plasma and catalytic reformers has been developed, and has been applied to stabilize unstable flame of 200,000 Kcal/hr LPG combustor. The role of the plasma reformer is to generate hydrogen in a short period and to heat-up the catalytic reformer during the start-up time. After the start-up period, the catalytic reformer generates hydrogen through steam reforming with oxygen (SRO) reactions. The maximum capacity of the hydrogen generator is 100 lpm that is sufficient to be used to stabilize the flame of the present combustor. In order to reduce NOx and CO emissions simultaneously, 1) FGR (Flue Gas Recirculation) technique has been adopted and 2) the hydrogen has been added into the fuel supplied to the combustor. Test results shows that 25 % addition of hydrogen and 30 % FGR rate lead to simultaneous decrease of CO and NOx emissions. The technique proposed in the present study shows good potential to replace $NH_3$ SCR technique, especially in the case of small-scale combustor applications.

  • PDF

Characteristics of LPG Fuel Reforming using Plasma Technology (플라즈마를 이용한 LPG연료 개질 특성연구)

  • Kim, Changup
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, characteristics of reforming process of automotive liquefied petroleum gas (LPG) fuel using plasma reactor are investigated. Because plasma reformer technology has advantages of a fast start-up and wide fuel/oxidizer ratio of operation, and reactor size is smaller and more simple compared to typical combustor and catalytic reactor, plasma reforming is suitable to the on-board vehicle reformer. To evaluate the characteristics of the reforming process, parametric effect of $O_2/C$ ratios, reactant flow rate and metal form on the process were investigated. In the test of varying $O_2/C$ ratio from partial oxidation to stoichiometry combustion, conversion of LPG was increased but selectivity of $H_2$ decreased. The optimum condition of $O_2/C$ ratio for the highest $H_2$ yield was determined to be around 1.0 for 20~50 lpm, and 1.35 for 100 lpm. Specific energy density (SED) was major factor in reforming process and higher SED leads to higher $H_2$ yield. And metal form in the reformer increased $H_2$ yield of about 34 % as compared to the case of no metal form. The result can be a guide to map optimal condition of reforming process.

Development of a Plasma-Dump Reformer for Syngas Production (합성가스 생산을 위한 플라즈마-덤프 개질기 개발)

  • Lim, Mun Sup;Kim, Eun Hyuk;Chun, Young Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.586-593
    • /
    • 2014
  • Limited sources of fossil fuels and also global climate changes caused by $CO_2$ emissions are currently discussed around the world. As a renewable, carbon neutral and widely available energy source, biogas is regarded as a promising alternative to fossil fuels. In this study, a plasma dump reformer was proposed to produce $H_2$-rich synthesis gas by a model biogas. The three-phase gliding arc plasma and dump combustor were combined. Screening studies were carried out with the parameter of a dump injector flow rate, water feeding flow rate, air ratio, biogas component ratio and input power. As the results, methane conversion rate, carbon dioxide conversion rate, hydrogen selectivity, carbon monoxide yield at the optimum conditions were achieved to 98%, 69%, 42%, 24.7%, respectively.

Propane Reforming in Gliding Arc Plasma Reformer for SynGas Generation (합성가스 생성을 위한 글라이딩 아크 플라즈마 개질기에서 프로판 개질)

  • Yang, Yoon-Cheol;Chun, Young-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.869-875
    • /
    • 2009
  • The purpose of this paper is to investigate the optimal condition of the syngas production by reforming of propane using Gliding arc plasma reformer. The gliding arc plasma reformer in 3 phases has been newly designed and developed with a quick starting and fast response time. It can be applicable to the various types of fuels (Hydrocarbons $C_xH_y$), and it has a high conversion rate of fuels and high production of hydrogen. The parametric screening studies were carried out according to the changes of a steam feed amount i.e., steam/carbon ratio, total gas flow rate and input electric power. The optimum operating conditions were S/C ratio 2.8, total gas flow rate of 14 L/min and input electric power of 2.4 kW. The result of optimum operating conditions showed the 55 % $H_2$, 14 % CO, 15 % $CO_2$, 10 % $C_3H_8$ and 4 % $CH_4$. Also, $C_3H_8$ conversion, $H_2$ yield and $H_2$ selectivity were 90 %, 42 %, 15 %, respectively. The energy efficiency and specific energy requirements were 37 % and 334 kJ/mol respectively.

Characteristics of LPG Fuel Reforming Utilizing Plasma Reformer (LPG 연료의 플라즈마 개질 특성연구)

  • Park, Yunhwan;Lee, Deahoon;Kim, Changup;Kang, Kernyoung;Cho, Yongseok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.17-22
    • /
    • 2012
  • In this study, characteristics of reforming process of Automotive LPG fuel using plasma reactor are investigated. Because plasma reformer technology has advantages of a fast start-up and wide fuel/oxidizer ratio of operation, and reactor size is smaller and more simple compared to typical combustor and catalytic reactor, plasma reforming is suitable to the on-board vehicle reformer. To evaluate the characteristics of the reforming process, parametric effect of $O_2$/C ratio, reactant flow rate and plasma power on the process were investigated. In the test of varying $O_2$/C ratio from partial oxidation stoichiometry to combustion stoichiometry, conversion of LPG was increased but selectivity of $H_2$ decreased. The optimum condition of $O_2$/C ratio for the highest $H_2$ yield was determined to be 0.8~0.9 for 20~50 lpm. The result can be a guide to map optimal condition of reforming process.

Light Tar Decomposition of Product Pyrolysis Gas from Sewage Sludge in a Gliding Arc Plasma Reformer

  • Lim, Mun-Sup;Chun, Young-Nam
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.89-94
    • /
    • 2012
  • Pyrolysis/gasification technology utilizes an energy conversion technique from various waste resources, such as biomass, solid waste, sewage sludge, and etc. to generating a syngas (synthesis gas). However, one of the major problems for the pyrolysis gasification is the presence of tar in the product gas. The tar produced might cause damages and operating problems on the facility. In this study, a gliding arc plasma reformer was developed to solve the previously acknowledged issues. An experiment was conducted using surrogate benzene and naphthalene, which are generated during the pyrolysis and/or gasification, as the representative tar substance. To identify the characteristics of the influential parameters of tar decomposition, tests were performed on the steam feed amount (steam/carbon ratio), input discharge power (specific energy input, SEI), total feed gas amount and the input tar concentration. In benzene, the optimal operating conditions of the gliding arc plasma 2 in steam to carbon (S/C) ratio, 0.98 $kWh/m^3$ in SEI, 14 L/min in total gas feed rate and 3.6% in benzene concentration. In naphthalene, 2.5 in S/C ratio, 1 $kWh/m^3$ in SEI, 18.4 L/min in total gas feed rate and 1% in naphthalene concentration. The benzene decomposition efficiency was 95%, and the energy efficiency was 120 g/kWh. The naphthalene decomposition efficiency was 79%, and the energy yield was 68 g/kWh.