DOI QR코드

DOI QR Code

Characteristics of LPG Fuel Reforming Utilizing Plasma Reformer

LPG 연료의 플라즈마 개질 특성연구

  • Received : 2012.08.22
  • Accepted : 2012.12.18
  • Published : 2012.12.31

Abstract

In this study, characteristics of reforming process of Automotive LPG fuel using plasma reactor are investigated. Because plasma reformer technology has advantages of a fast start-up and wide fuel/oxidizer ratio of operation, and reactor size is smaller and more simple compared to typical combustor and catalytic reactor, plasma reforming is suitable to the on-board vehicle reformer. To evaluate the characteristics of the reforming process, parametric effect of $O_2$/C ratio, reactant flow rate and plasma power on the process were investigated. In the test of varying $O_2$/C ratio from partial oxidation stoichiometry to combustion stoichiometry, conversion of LPG was increased but selectivity of $H_2$ decreased. The optimum condition of $O_2$/C ratio for the highest $H_2$ yield was determined to be 0.8~0.9 for 20~50 lpm. The result can be a guide to map optimal condition of reforming process.

본 연구에서는 플라즈마 반응기를 이용한 자동차용 LPG 연료의 개질 특성에 대해서 실험하였다. 실험에서 사용된 플라즈마 반응기술은 종전의 촉매반응기술에 비해서 빠른 기동시간 및 연소기 부하변동 응답성, 단순하고 소형화가 가능한 장점을 가지고 있어 차량의 온-보드형 개질에 적합하다. 본 개질 반응의 특성을 평가하기 위해 플라즈마 반응기로 공급되는 $O_2$/C 비와 공급되는 공기와 LPG의 총 유량 및 플라즈마 공급전력을 주요 변수로 실험하였다. 공급되는 전력이 일정할 때, $O_2$/C 비 변화 실험에서는 완전산화 조건으로 갈수록 LPG 전환율은 증가하지만 수소의 선택도는 감소되었다. 높은 수소 선택도와 수율을 동시에 만족시키는 $O_2$/C 비는 20~50lpm 조건에서 0.8~0.9 이었으며, 총 유량이 증가할수록 LPG 전환율과 수소 수율이 감소하는 경향을 나타내었다.

Keywords

References

  1. Junhong Park, Jongtae Lee, Sunmoon Kim, Jeongsoo Kim, Daeil Kang, Yunsung Lim and Boyoung Han, "Estimation on the Emission Reduction of SULEV LPG Vehicles," J. KOSAE Vol. 28, NO.1, pp.66-76, 2012 https://doi.org/10.5572/KOSAE.2012.28.1.068
  2. Kernyong Kang, Daeyup Lee, Seungmook Oh and Changup Kim, "Performance of an Liquid Pase LPG Injection Engine for Heavy Duty Vehicles," SAE 2001-02-1958, 2001
  3. Changup Kim, Daeyup Lee, Seungmook Oh, Kernyong Kang, Hoimyung Choi and Kyoungdoug Min, "Enhancing Performance and Combustion of an LPG MPI Engine for Heavy Duty Vehicles," SAE 2002 International Congress and Exposition, 2002-01-0449, 2002
  4. Tunestal, P., Christensen, M., Einewall, P., Andersson, T. et al., "Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers," SAE Technical Paper 2002-01-2686, 2002
  5. Miyamoto, T., Hasegawa, H., Yagenji, T., Seo, T. et al., "Effects of Hydrogen Addition to Intake Mixture on Cyclic Variation of Diesel Engine," SAE Technical Paper 2011-01-1964, 2011
  6. Kirwan, J., Quader, A., and Grieve, M., "Fast Start-Up On-Board Gasoline Reformer for Near Zero Emissions in Spark-Ignition Engines," SAE Technical Paper 2002-01-1011, 2002
  7. Tomohiro Nozaki, Akinori Hattori, Ken Okazaki, 2004, "Partial oxidation of methane using a microscale non-equilibrium plasma reactor," Catalysis today 98, pp. 604-616
  8. L. Bromberg, D. R. Cohn, A. Rabinovich, J. E. Surma, and J. Virden, "Compact plasmatronboosted hydrogen generation technology for vehicular applications," Int.J. Hydrogen Energy, Vol. 24, pp. 341-350, 1999 https://doi.org/10.1016/S0360-3199(98)00013-5
  9. Dae Hoon Lee, Kwan-TAE Kim, Min Suk Cha, Young-Hoon Song, "Effect of excess oxygen in plasma reforming of diesel fuel," Int.J. Hydrogen Energy, Vol. 35, pp. 4668-4675, 2010 https://doi.org/10.1016/j.ijhydene.2010.02.091

Cited by

  1. Application Research on LPG Injector type Plasma Reformer vol.18, pp.1, 2014, https://doi.org/10.7842/kigas.2014.18.1.1
  2. Characteristics of LPG fuel Reforming in Plasma Reformer for Hydrogen Production vol.17, pp.6, 2013, https://doi.org/10.7842/kigas.2013.17.6.8