• 제목/요약/키워드: Plasma process

검색결과 2,611건 처리시간 0.027초

모사 부식 환경에서 플라즈마 아크용사에 의한 Al 코팅의 부식특성에 관한 실험적 연구 (Experimental Study on the Corrosion Behavior of Al Coatings Applied by Plasma Thermal Arc Spray under Simulated Environmental Conditions)

  • 정화랑
    • 한국건축시공학회지
    • /
    • 제23권5호
    • /
    • pp.559-570
    • /
    • 2023
  • 건설산업에서 사용되는 구조용 강재의 부식은 산업화로 인해 많은 공격적인 이온이 내포된 대기 환경에서 증가추세에 있다. 따라서 본 연구에서는 아크 및 플라즈마 아크용사로 Al 코팅을 용착하여 Cl-와 CO32-같은 공격적인 이온을 다량 함유한 Society of Automotive Engineering(SAE) J2334 용액의 모사대기환경에서 그 효과를 비교하였다. 다양한 분석기법으로 코팅 특성과 부식 메커니즘을 고찰하였다. 플라즈마 아크용사로 용착된 Al 코팅은 밀도 있고 균일하면 층층이 적층이 잘 되었고 높은 부착력이 나타났다. 이 공법으로 용착된 Al 코팅을 SAE J2334 용액에 기간별로 침지하여 측정한 개회로전위(OCP)는 아크용사로 용착된 Al 코팅보다 더 양전성(electropositive)한 값을 보여주었다. 플라즈마 아크용사는 총 임피던스가 아크용사보다 높게 나타났다. SAE J2334 용액에 23일 침지하였을 때 플라즈마 아크용사 Al 코팅의 부식속도는 아크용사에 비해 20% 감소하였다.

적응 훈련 신경망을 이용한 플라즈마 식각 공정 수율 향상을 위한 공정 분석 및예측 시스템 개발 (Development of Process Analysis and Prediction Systeme to Improve Yield in Plasma Etching Process Using Adaptively Trained Neural Network)

  • 최문규;김훈모
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.98-105
    • /
    • 1999
  • As the IC(Integrated Circuit) has been densified and complicated, it is required to thorough process control to improve yield. Experts, for this purpose, focused on the process analysis automation, which is came from the strict data management in semiconductor manufacturing. In this paper, we presents the process analysis system that can analyze causes, for a output after processes. Also, the plasma etching process that highly affects yield among semiconductor process is modeled to predict a output before the process. To approach this problem, we use adaptively trained neural networks that exhibit superior accuracy over statistical techniques. And in comparison with methods in other paper, a method that history of trend for input data is considered is shown to offer advantage in both learning and prediction capability. This research regards CD(Critical Dimension) that is considerable in high integrated circuit as output variable of the prediction model.

  • PDF

아크 플라즈마에 의한 PTFE 노즐 용삭현상 (ABLATION OF PTFE NOZZLE DRIVEN BY ARC PLASMA)

  • 이종철;김윤제
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.311-317
    • /
    • 2005
  • It has been the most progressive interruption technique to use the ablation gas from the surface of PTFE nozzle driven by arc plasma during switching process in $SF_6$ gas circuit breakers. This advanced interruption technique can reduce the required mechanical energy to compress and blow the gas for extinguishing the arc plasma between the electrodes due to using the ablation effect instead. In order to consider the phenomena during calculation of switching process, it is required to confirm the principles of ablation from PTFE nozzle as well as of arc plasma during switching process. In this study, we have calculated the switching process considered the ablation of PTFE nozzle driven by arc plasma using multidisciplinary simulation technique and compared the results with the data without the ablation effect. More $50\%$ difference of pressure rise inside expansion chamber has been found from the results and it should be indispensable for this type of computational work to consider and include the ablation effect of PTFE nozzle. Further study on turbulence and radiation will be followed.

  • PDF

플라스마 이온증착 기술을 이용한 스테인리스강의 질화처리에 관한 연구 (Research of Nitriding Process on Austenite Stainless Steel with Plasma Immersion Ion Beam)

  • 김재돌;박일수;옥철호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.262-267
    • /
    • 2008
  • Plasma immersion ion beam (PIIB) nitriding process is an environmentally benign and cost-effective process, and offers the potential of producing high dose of nitrogen ions in a way of simple, fast and economic technique for the high plasma flux treatment of large surface area with nitrogen ion source gas. In this report PIIB nitriding technique was used for nitriding on austenite stainless steel of AISI304 with plasma treatment at $250{\sim}500^{\circ}C$ for 4 hours, and with the working gas pressure of $2.67{\times}10^{-1}$ Pa in vacuum condition. This PIIB process might prove the advantage of the low energy high flux of ion bombardment and enhance the tribological or mechanical properties of austenite stainless steel by nitriding, Furthermore, PIIB showed a useful surface modification technique for the nitriding an irregularly shaped three dimensional workpiece of austenite stainless steel and for the improvement of surface properties of AISI 304, such as hardness and strength

Nanoparticle Phosphors Synthesized by Inductively Controlled Plasma Process for Plasma Based Display

  • Yang, Choong-Jin;Park, Jong-Il;Choi, Seung-Dueg;Park, Eon-Byeong;Lee, Young-Joo
    • 한국세라믹학회지
    • /
    • 제45권7호
    • /
    • pp.380-386
    • /
    • 2008
  • Optimized volume production of nanoscale phosphor powders synthesized by radio frequency (RF) plasma process was developed for the application to plasma display panels. The nano powders were synthesized by feeding the both solid and liquid type precursors, and nanoparticle phosphors were characterized in terms of particle size, shape, and photoluminescence (PL) intensities. Computer simulation was performed in advance to determine the process parameters, and nano phosphors were evaluated by comparing with current commercial micron-sized phosphor powders. Practical feeding of both solid and liquid type precursor was proved to be effective for volume production.The developed process showed a potential as a production method for red, blue and green phosphor although the PL intensity still needs further improvement.

IGZO박막 증착 공정에서 플라즈마 방출광 모니터링 및 플라즈마 균일도 제어 (Monitoring and Controlling Uniformity of Plasma Emission Intensity for IGZO Sputtering Process)

  • 최진우;황상혁;김우재;신기원;권희태;조태훈;우원균;차성덕;안병철;박완우;도재철;권기청
    • 반도체디스플레이기술학회지
    • /
    • 제15권4호
    • /
    • pp.27-32
    • /
    • 2016
  • In recent years, various researches have been conducted to improve process yields in accordance with miniaturization of semiconductor. APC(Advanced Process Control) is considered one of the methods to increase in process yields. APC is a process control technology that maintains optimal process conditions and improves the reliability of results by controlling and formulating the relationship among the various process parameters and results. We built up an optical diagnostic system with a three-channel spectrometer. The system detects signals those represent the changes of specific emission peaks intensity versus each reference and converts it into MFC control signals to get back the changes to the reference state. Controlling the MFC continues until the specific peak intensity changes into the normal state. Through this device, we tested a APC automatically responding to process changes during the plasma process. We could control gas flow while sputtering process on going and improve uniformity of plasma intensity with this system. Finally, we have got results those enhance the plasma intensity non-uniformity to 7.7% from 15.5%. Also, found unexpected oxygen flow what is estimated to be come out from IGZO target.

Analysis of Single Crystal Silicon Solar Cell Doped by Using Atmospheric Pressure Plasma

  • Cho, I-Hyun;Yun, Myoung-Soo;Son, Chan-Hee;Jo, Tae-Hoon;Kim, Dong-Hae;Seo, Il-Won;Roh, Jun-Hyoung;Lee, Jin-Young;Jeon, Bu-Il;Choi, Eun-Ha;Cho, Guang-Sup;Kwon, Gi-Chung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.357-357
    • /
    • 2012
  • The doping process of the solar cell has been used by furnace or laser. But these equipment are so expensive as well as those need high maintenance costs and production costs. The atmospheric pressure plasma doping process can enable to the cost reduction. Moreover the atmospheric pressure plasma can do the selective doping, this means is that the atmospheric pressure plasma regulates the junction depth and doping concentration. In this study, we analysis the atmospheric pressure plasma doping compared to the conventional furnace doping. the single crystal silicon wafer doped with dopant forms a P-N junction by using the atmospheric pressure plasma. We use a P type wafer and it is doped by controlling the plasma process time and concentration of dopant and plasma intensity. We measure the wafer's doping concentration and depth by using Secondary Ion Mass Spectrometry (SIMS), and we use the Hall measurement because of investigating the carrier concentration and sheet resistance. We also analysis the composed element of the surface structure by using X-ray photoelectron spectroscopy (XPS), and we confirm the structure of the doped section by using Scanning electron microscope (SEM), we also generally grasp the carrier life time through using microwave detected photoconductive decay (u-PCD). As the result of experiment, we confirm that the electrical character of the atmospheric pressure plasma doping is similar with the electrical character of the conventional furnace doping.

  • PDF

플라즈마를 이용한 LPG연료 개질 특성연구 (Characteristics of LPG Fuel Reforming using Plasma Technology)

  • 김창업
    • 한국수소및신에너지학회논문집
    • /
    • 제26권1호
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, characteristics of reforming process of automotive liquefied petroleum gas (LPG) fuel using plasma reactor are investigated. Because plasma reformer technology has advantages of a fast start-up and wide fuel/oxidizer ratio of operation, and reactor size is smaller and more simple compared to typical combustor and catalytic reactor, plasma reforming is suitable to the on-board vehicle reformer. To evaluate the characteristics of the reforming process, parametric effect of $O_2/C$ ratios, reactant flow rate and metal form on the process were investigated. In the test of varying $O_2/C$ ratio from partial oxidation to stoichiometry combustion, conversion of LPG was increased but selectivity of $H_2$ decreased. The optimum condition of $O_2/C$ ratio for the highest $H_2$ yield was determined to be around 1.0 for 20~50 lpm, and 1.35 for 100 lpm. Specific energy density (SED) was major factor in reforming process and higher SED leads to higher $H_2$ yield. And metal form in the reformer increased $H_2$ yield of about 34 % as compared to the case of no metal form. The result can be a guide to map optimal condition of reforming process.

p-n 접합 형성을 위한 반도체 실리콘 웨이퍼 대기압 플라즈마 붕소 확산 가능성 연구 (Study of Boron Doping Feasibility with Atmospheric Pressure Plasma for p-n Junction Formation on Silicon Wafer for Semiconductor)

  • 김우재;이환희;권희태;신기원;양창실;권기청
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.20-24
    • /
    • 2017
  • Currently, techniques mainly used in semiconductor impurity diffusion processes include furnace thermal diffusion, ion implantation, and vacuum plasma doping. However, there is a disadvantage that the process equipment and the unit cost are expensive. In this study, boron diffusion process using relatively inexpensive atmospheric plasma was conducted to solve this problem. With controlling parameters of Boron diffusion process, the doping characteristics were analyzed by using secondary ion mass spectrometry. As a result, the influence of each variable in the doping process was analyzed and the feasibility of atmospheric plasma doping was confirmed.

  • PDF

Abnormal Detection in 3D-NAND Dielectrics Deposition Equipment Using Photo Diagnostic Sensor

  • Kang, Dae Won;Baek, Jae Keun;Hong, Sang Jeen
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.74-84
    • /
    • 2022
  • As the semiconductor industry develops, the difficulty of newly required process technology becomes difficult, and the importance of production yield and product reliability increases. As an effort to minimize yield loss in the manufacturing process, interests in the process defect process for facility diagnosis and defect identification are continuously increasing. This research observed the plasma condition changes in the multi oxide/nitride layer deposition (MOLD) process, which is one of the 3D-NAND manufacturing processes through optical emission spectroscopy (OES) and monitored the result of whether the change in plasma characteristics generated in repeated deposition of oxide film and nitride film could directly affect the film. Based on these results, it was confirmed that if a change over a certain period occurs, a change in the plasma characteristics was detected. The change may affect the quality of oxide film, such as the film thickness as well as the interfacial surface roughness when the oxide and nitride thin film deposited by plasma enhenced chemical vapor deposition (PECVD) method.