• Title/Summary/Keyword: Plasma nitridation

Search Result 29, Processing Time 0.027 seconds

A Study on Improvement and Degradation of Si/SiO2 Interface Property for Gate Oxide with TiN Metal Gate

  • Lee, Byung-Hyun;Kim, Yong-Il;Kim, Bong-Soo;Woo, Dong-Soo;Park, Yong-Jik;Park, Dong-Gun;Lee, Si-Hyung;Rho, Yong-Han
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.6-11
    • /
    • 2008
  • In this study, we investigated effects of hydrogen annealing (HA) and plasma nitridation (PN) applied in order to improve $Si/SiO_2$ interface characteristics of TiN metal gate. In result, HA and PN showed a positive effect decreasing number of interface state $(N_{it})$ respectively. After FN stress for verifying reliability, however, we identified rapid increase of $N_{it}$ for TiN gate with HA, which is attributed to hydrogen related to a change of $Si/SiO_2$ interface characteristic. In contrast to HA, PN showed an improved Nit and gate oxide leakage characteristic due to several possible effects, such as blocking of Chlorine (Cl) diffusion and prevention of thermal reaction between TiN and $SiO_2$.

Dependence of Low-frequency Noise and Device Characteristics on Initial Oxidation Method of Plasma-nitride Oxide for Nano-scale CMOSFET (Nano-CMOSFET를 위한 플라즈마-질화막의 초기 산화막 성장방법에 따른 소자 특성과 저주파 잡음 특성 분석)

  • Joo, Han-Soo;Han, In-Shik;Goo, Tae-Gyu;Yoo, Ook-Sang;Choi, Won-Ho;Choi, Myoung-Gyu;Lee, Ga-Won;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, two kinds of initial oxidation methods i.e., SLTO(Slow Low Temperature Oxidation: $700^{\circ}C$) and RTO(Rapid Thermal Oxidation: $850^{\circ}C$) are applied prior to the plasma nitridation for ultra thin oxide of RPNO (Remote Plasma Nitrided Oxide). It is observed that SLTO has superior characteristics to RTO such as lower SS(Sub-threshold Slope) and improved Ion-Ioff characteristics. Low frequency noise characteristics of SLTO also showed better than RTO both in linear and saturation regime. It is shown that flicker noise is dominated by carrier number fluctuation in the channel region. Therefore, SLTO is promising for nano-scale CMOS technology with ultra thin gate oxide.

Magnetic Tunnel Junctions with AlN and AlO Barriers

  • Yoon, Tae-Sick;Yoshimura, Satoru;Tsunoda, Masakiyo;Takahashi, Migaku;Park, Bum-Chan;Lee, Young-Woo;Li, Ying;Kim, Chong-Oh
    • Journal of Magnetics
    • /
    • v.9 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • We studied the magnetotransport properties of tunnel junctions with AlO and AlN barriers fabricated using microwave-excited plasma. The plasma nitridation process provided wider controllability than the plasma oxidization for the formation of MTJs with ultra-thin insulating layer, because of the slow nitriding rate of metal Al layers, comparing with the oxidizing rate of them. High tunnel magnetoresistance (TMR) ratios of 49 and 44% with respective resistance-area product $(R{\times}A) of 3 {\times} 10^4 and 6 {\times} 10^3 {\Omega}{\mu}m^2$ were obtained in the Co-Fe/Al-N/Co-Fe MTJs. We conclude that AlN is a hopeful barrier material to realize MTJs with high TMR ratio and low $R{\times}A$ for high performance MRAM cells. In addition, in order to clarify the annealing temperature dependence of TMR, the local transport properties were measured for Ta $50{\AA} /Cu 200 {\AA}/Ta 50 {\AA}/Ni_{76}Fe_{24} 20 {\AA}/Cu 50 {\AA}/Mn_{75}Ir_{25} 100 {\AA}/Co_{71}Fe_{29} 40 {\AA}/Al-O$ junction with $d_{Al}= 8 {\AA} and P_{O2}{\times}t_{0X}/ = 8.4 {\times} 10^4$ at various temperatures. The current histogram statistically calculated from the electrical current image was well in accord with the fitting result considering the Gaussian distribution and Fowler-Nordheim equation. After annealing at $340^{\circ}C$, where the TMR ratio of the corresponding MTJ had the maximum value of 44%, the average barrier height increased to 1.12 eV and its standard deviation decreased to 0.1 eV. The increase of TMR ratio after annealing could be well explained by the enhancement of the average barrier height and the reduction of its fluctuation.

XPS study of sapphire substrate surface nitridated by plasma activated nitrogen source (Plasma로 활성화된 질소 원자를 사용한 사파이어 기판 표면의 저온 질화처리의 XPS 연구)

  • 이지면;백종식;김경국;김동준;김효근;박성주
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.320-327
    • /
    • 1998
  • The chemical aspects of nitridated surface of sapphire(0001) have been studied by X-ray photoelectron spectroscopy. Nitridated layer was formed by remote plasma enhanced-ultrahigh vacuum deposition at a low temperature range. It was confirmed that this nitridated surface was mainly consists of AIN layer. The relative amounts of nitrogen reacted with AL on the sapphire surface and their surface morphology were investigated with X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) as a function of radio-frequency power, reaction temperature, and reaction time. The amounts of atomic nitrogen activated by plasma which was subsequently incorporated into sapphire were increased with RF power. But the amounts of nitrogen reacted with AI in sapphire was initially increased and then remained constant. However, the relative amounts of AIN were nearly constant with irrespective of nitridation temperature and time. Furthermore, a depth porfile of nitridated layer with XPS showed that the nitridated surface consisted of three layers with different stoichiometry.

  • PDF

The Research of FN Stress Property Degradation According to S-RCAT Structure (S-RCAT (Spherical Recess Cell Allay Transistor) 구조에 따른 FN Stress 특성 열화에 관한 연구)

  • Lee, Dong-In;Lee, Sung-Young;Roh, Yong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1614-1618
    • /
    • 2007
  • We have demonstrated the experimental results to obtain the immunity of FN (Fowler Nordheim) stress for S-RCAT (Spherical-Recess Cell Array Transistor) which has been employed to meet the requirements of data retention time and propagation delay time for sub-100-nm mobile DRAM (Dynamic Random Access Memory). Despite of the same S-RCAT structure, the immunity of FN stress of S-RCAT depends on the process condition of gate oxidation. The S-RCAT using DPN (decoupled plasma nitridation) process showed the different degradation of device properties after FN stress. This paper gives the mechanism of FN-stress degradation of S-RCAT and introduces the improved process to suppress the FN-stress degradation of mobile DRAM.

Electrical Properties of Silicon Nitride Thin Films Formed (ECR 플라즈마에 의해 형성된 실리콘 질화막의 전기적 특성)

  • 구본영;전유찬;주승기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.10
    • /
    • pp.35-41
    • /
    • 1992
  • Ultra-thin silicon nitride films were fabricated with ECR(Electron cyclotron Resonance) nitrogen plasma at room temperature. Film thickness was about 50$\AA$ after nitridation for 1min at microwave power of 1000W, RF power of 500W, and NS12T pressure of ${\times}10^{-3}$ torr. 50$\AA$ fo nitride film was grown within 1 min and no appreciable growth occured thereafter. Dielectric breakdown strength and leakage current density in Al/SiN/Si structure were measured to be about 7-11 MV/cm and ${\times}10^{-10}~5{\times}10^{-10}A/cm^{2}$, respectively. Observed linear relationship in 1n(J/E)-vs-E$^{1/2}$ and no polarity-dependence of the leakage current indicated that the Poole-Frenkel emission is mainly responsible for the conduction in this nitrided silicon films.

  • PDF

Study on P-type in-situ doped Polysilicon Films (P형 in-situ 도핑 폴리실리콘 막질에 관한 연구)

  • Oh, Jung-Sup;Lee, Sang-Eun;Noh, Jin-Tae;Lee, Sang-Woo;Bae, Kyoung-Sung;Roh, Yong-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.208-212
    • /
    • 2008
  • This paper reports physical properties of in situ boron doped silicon films made from boron source gas and silane ($SiH_4$) gas in a conventional low-pressure chemical vapor deposition vertical furnace. If the p-type polysilicon is formed by boron implantation into undoped polysilicon, the plasma nitridation (PN) process is added on the oxide in order to suppress boron penetration that can be caused during the thermal treatments used in fabrication. In-situ boron doped polysilicon deposition can complete p-type polysilicon film with only one deposition process and need not the PN process, because there is not interdiffusion of dopant at the intermediate temperatures of the subsequent steps. Since in-situ boron doped polysilicon films have higher work function than that of n-type polysilicon and they are compatible with the underlying oxide, they may be promising materials for improving memory cell characteristics if we make its profit of these physical properties.

Fabrication of Aluminum Nitride Reinforced Aluminum Matrix Composites via Plasma Arc Melting under Nitrogen Atmosphere (플라즈마 아크 용해 공정으로 자발합성된 질화알루미늄 강화 알루미늄기지 복합재료의 개발)

  • Sujin Jeong;Je In Lee;Eun Soo Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.101-107
    • /
    • 2023
  • In this study, aluminum nitride (AlN) reinforced aluminum (Al) matrix composites are fabricated via plasma arc melting under a nitrogen atmosphere. Within a minute of the chemical reaction between Al and N, dispersed AlN with the shape of transient and lamellar layers is in situ formed in the Al matrix. The composite contains 10 vol.% AlN reinforcements with low thermal resistance and strong bonding at the interfaces, which leads to the unique combination of thermal expansivity and conductivity in the resulting composites. The coefficient of thermal expansion of the composite can be further reduced when Si was alloyed into the Al matrix, which proposes the potential of the in situ Al matrix composites for thermal management applications.

Growth of Epitaxial AlN Thin Films on Sapphire Substrates by Plasma-Assisted Molecular Beam Epitaxy (플라즈마분자선에피탁시법을 이용한 사파이어 기판 위 질화알루미늄 박막의 에피탁시 성장)

  • Lee, Hyo-Sung;Han, Seok-Kyu;Lim, Dong-Seok;Shin, Eun-Jung;Lim, Se-Hwan;Hong, Soon-Ku;Jeong, Myoung-Ho;Lee, Jeong-Yong;Yao, Takafumi
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.634-638
    • /
    • 2011
  • We report growth of epitaxial AlN thin films on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy. To achieve two-dimensional growth the substrates were nitrided by nitrogen plasma prior to the AlN growth, which resulted in the formation of a two-dimensional single crystalline AlN layer. The formation of the two-dimensional AlN layer by the nitridation process was confirmed by the observation of streaky reflection high energy electron diffraction (RHEED) patterns. The growth of AlN thin films was performed on the nitrided AlN layer by changing the Al beam flux with the fixed nitrogen flux at 860$^{\circ}C$. The growth mode of AlN films was also affected by the beam flux. By increasing the Al beam flux, two-dimensional growth of AlN films was favored, and a very flat surface with a root mean square roughness of 0.196 nm (for the 2 ${\mu}m$ ${\times}$ 2 ${\mu}m$ area) was obtained. Interestingly, additional diffraction lines were observed for the two-dimensionally grown AlN films, which were probably caused by the Al adlayer, which was similar to a report of Ga adlayer in the two-dimensional growth of GaN. Al droplets were observed in the sample grown with a higher Al beam flux after cooling to room temperature, which resulted from the excessive Al flux.