• Title/Summary/Keyword: Plasma gas

Search Result 2,285, Processing Time 0.028 seconds

Selective determination of mercury (II) ion in aqueous solution by chemiluminescence method (화학발광법에 의한 수용액 중의 선택적 수은(II) 이온 정량)

  • Kim, Kyung-Min;Jang, Taek-Gyun;Kim, Young-Ho;Oh, Sang-Huyb;Lee, Sang-Hak
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.243-248
    • /
    • 2011
  • A selective determination method of mercury (II) ion in aqueous solution by luminol-based chemiluminescence system (luminol CL system) has been developed. Determination of metal ions such as copper (II), iron (III), chromium (III) ion in solution by the luminol CL system using its catalytic role in the reaction of luminol and hydrogen peroxide has been reported by several groups. In this study, the catalytic activity of mercury (II) ion in the reaction of luminol and hydrogen peroxide was observed by the enhanced CL intensity of the luminol CL system. Based on this phenomenon, experimental conditions of the luminol CL system were investigated and optimized to determine mercury (II) ion in aqueous solution. While mercury (II) ion in mixed sample solution containing mercury (I) and (II) ions highly enhanced the CL intensity of the luminol CL system, the mercury (I) ion could not enhanced the CL intensity. Thus selective determination of the mercury (II) ions in a mixture containing mercury (I) and (II) ions could be achieved. Each concentration of mercury (I) and (II) ions in aqueous solution can be obtained from the results of the CL method that give the concentration of only mercury (II) ion and the inductively coupled plasma (ICP) method that give the total concentration of mercury ions. On the optimized conditions, the calibration curve of mercury (II) ion was linear over the range from $1.25{\times}10^{-5}$ to $2.50{\times}10^{-3}M$ with correlation coefficient of 0.991. The detection limit of mercury (II) ion in aqueous solution was calculated to be $1.25{\times}10^{-7}M$.

Comparison of Ingredients and Antioxidant Activity of the Domestic Regional Wolfiporia extensa (국내 지역별 매립 복령의 성분 및 항산화 활성 비교)

  • Choi, Su-Hee;Lee, Seung-Jin;Jo, Woo-Sik;Choi, Jong-Woon;Park, Seung-Chun
    • The Korean Journal of Mycology
    • /
    • v.44 no.1
    • /
    • pp.23-30
    • /
    • 2016
  • This study was conducted for comparison of ingredients, phytochemical compounds and antioxidant activity of Wofiporia extensa cultured in Gangwon-do, Gyeongsang-do, and Jeolla-do. Three contents of Wofiporia extensa were analyzed as oxygen (46~48%), carbon (38~39%), hydrogen (6.05~6.1%) and nitrogen (0.17~0.21%). The mineral contents of 50% ethanol Wofiporia extensa extracts were measured as sulfur (S) 145~149 ppm, Magnesium (Mg) 69~72 ppm, phosphorus (P) 122~154 ppm and calcium (Ca) 210.61~509.98 ppm. Wofiporia extensa from Gyeongsang-do (509.98 ppm) contained a significantly higher quantity of Ca than that from Gangwon-do (210.62 ppm) and Jeolla-do (223.88 ppm). In the gas chromatograph-mass spectrometry (GC-MS) analysis, oleic acid was identified in three 50% ethanol Wofiporia extensa extracts. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay for antioxidant activity, the $IC_{50}$ values of Wofiporia extensa cultured in Gangwon-do, Gyeongsang-do and Jeolla-do were calculated as 2.966 mg/mL, 23.03 mg/mL, and 4.16 mg/mL and 3.521 mg/mL, 12.17 mg/mL, and 7.40 mg/mL. In the ferric reducing antioxidant power (FRAP) assay, the $IC_{50}$ values of Wofiporia extensa cultured in Gangwon-do, Gyeongsang-do, Jeolla-do were 6.585 mg/mL, 19.06 mg/mL, and 18.97 mg/mL, respectively. In summary, Wofiporia extensa cultured in Gangwon-do had stronger antioxidant activity and higher concentration of oleic acid than that of Geyongsang-do and Jeolla-do. However, Wofiporia extensa cultured in Geyongsang-do contained a much higher concentration of Ca than that of Gangwon-do and Jeolla-do.

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF

The Effect of Aerobic Exercise on Body Composition, Cardiopulmonary Function, Serum Lipid and Antioxidants of Obese College Female Students (에어로빅운동이 비만여대생의 신체조성, 심폐기능, 혈청지질 및 항산화물질에 미치는 영향)

  • Jung Eun-Sook;Park Hyeong-Sook
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.5 no.1
    • /
    • pp.125-141
    • /
    • 1998
  • The purpose of this research is to analyze the effects of aerobic exercise on body composition, cardiopulmonary function, serum lipid level and antioxidants of obese and normal college female students. The subject group was made up of 13 normal students (below 30% body fat ratio) and 12 obese students (above 30% body fat ratio). After a pretest, the subjects were given an 8-week aerobic program. Then the subjects were given a posttest and analyzed of body composition, serum lipid level, antioxidants and cardiopulmonary function after the 6th and the 8th week of the program. The program schedule was made up of 4 days per week, 60 minutes per day. Test includes B.W., subscapular and triceps subcutaneous fat thickness, change of respiratory gas, and two blood sampling before treadmill exercise and post all out state, which analyzed serum lipid and antioxidants. The subjects performed treadmill exercise starting with 4km/hr of walking and then gradually increase the speed of 1km/hr per minute until all out state. The obtained data were analyzed using SAS program. The statistical methods employed here were one-way ANOVA with repeated measure, Duncan Multiple range test, paired-t test and t-test. The test results and conclusion of this research were as follows. 1. The effects of aerobic exercise on body composition were as follows ; Percent body fat was significantly reduced 6 weeks after the program and lean body mass was significantly increased 8 weeks after the program in both groups(obese group: F=3.44 P=.044, normal group: F=3.30 P=.048). subscapular skinfold of the obese group showed a remarkable decrease after the 6th week(F=4.33 P=.021) triceps skinfold of the normal group showed a remarkable decrease after the 6th and the 8th week(F=4.55 P=.017) compared with readings before the aerobic program, the aerobic program made a bigger difference concerning body fat, lean body mass, subscapular skinfold in the obese group than in the normal group(t=2.41 P=.024, t=2.40 p=.025, t=2.43 p=.028). 2. The effects of aerobic exercise on cardiopulmonary function were as follows ; Maximal $O_2$ uptake/kg was significantly increased 6 weeks after the program in the obese group(F=3.20 P=.054), but not much difference was observed in the normal group. Maximal pulse rate was significantly reduced in both groups after 6 weeks of the program(obese group: F=2.77 P=.087, normal group: F=7.17 P=.001). 3. The effects of aerobic exercise on serum lipid level were as follows ; In a resting period, total cholesterol, Triglyceride, and LDL-cholesterol were slightly higher in the obese group than in the normal group, but HDL-cholesterol was higher in the normal group. But, with the aerobic program, total-cholesterol, Triglyceride, LDL-cholesterol were reduced gradually and HDL-choleterol got increased in both groups, but not much change was noticed in the normal group. However, in the obese group, serum HDL-cholesterol level got increased significantly(F=5.12 P=.012). 4. The effects of aerobic exercise in serum antioxidants were as follows ; In a resting period, the obese group's serum Free Radical and GSSG content were higher than the normal group's and the normal group's serum GSH content was higher than the obese group's. After 6 weeks of the aerobic program, Free Radical was reduced significantly in both groups(obese group: F=13.87 P=.000, normal group: F=18.60 P=.000) In the obese group, 8 weeks after the program, GSH was increased significantly(F=13.78, P=.000). In the normal group, 6 weeks after the program, GSH was reduced but increased again after 8 weeks(F=6.07 P=.005). Plasma GSSG was significantly increased after 8 weeks of exercise in both groups(obese group: F=19.75 P=.000, normal group: F=22.42 P=.000,) Compared with readings before the aerobic program, the aerobic program made a bigger difference serum GSH in the normal group than in the obese group(t=3.37 p=.003). As this result shows, it is known that the regular aerobic exercise improves cardiopulmonary function, body composition, serum lipid effectively and through the serum Free Radical reduction and antioxidant system activation, oxidant stress was suppressed. This effect was higher in the obese group than in the normal one. At least 6weeks exercise period need for improvement of body composition, cardiopulmonary function and activation of antioxidant system. This result suggest that improvement of serum lipid profile was needed longer than 8weeks exercise period.

  • PDF

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.