Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.10.839

Investigation on Growth Characteristic of ZnO Nanostructure with Various O2 Pressures by Thermal Evaporation Process  

Kim, Kyoung-Bum (Optic and Electronic Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Jang, Yong-Ho (Optic and Electronic Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Kim, Chang-Il (Optic and Electronic Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Jeong, Young-Hun (Optic and Electronic Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Lee, Young-Jin (Optic and Electronic Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Jo, Jeong-Ho (Optic and Electronic Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Paik, Jong-Hoo (Optic and Electronic Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Nahm, Sahn (Department of Materials Science and Engineering, Korea University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.10, 2011 , pp. 839-843 More about this Journal
Abstract
ZnO nanostructures were developed on a Si (100) substrate from powder mixture of ZnO and 5 mol% Pd (ZP-5) as reactants by ${\times}$ sccm oxygen pressures(x= 0, 10, 20, 40). DTA (differential thermal analysis) result shows the Pd(5 mol%)+ZnO mixtured powder(PZ-5) is easily evaporated than pure ZnO powder. The PZ-5 mixtured powder was characterized by DTA to determine the thermal decomposition which was found to be at $800^{\circ}C$, $1,100^{\circ}C$. Weight loss(%) and ICP (inductively coupled plasma) analysis reveal that Zn vaporization is decreased by increased oxygen pressures from the PZ-5 at $1,100^{\circ}C$ for 30 mins. Needle-like ZnO nanostructures array developed from 10 sccm oxygen pressure, was well aligned vertically on the Si substrate at $1,100^{\circ}C$ for 30 mins. The lengths of the Needle-like ZnO nanostructures is about 2 ${\mu}m$ with diameters of about 65 nm. The developed ZnO nanostructures exhibited growth direction along [001] with defect-free high crystallinity. It is considered that Zn vaporization is responsible for the growth of Needle-like ZnO nanostructures by controlling the oxygen pressures. The photoluminescence spectra of ZnO nanostructures exhibited stronger 376.7 nm NBE (near band-edge emission) peak and 529.3 nm DLE (deep level energy) peak.
Keywords
ZnO nanostructure; Thermal evaporation; $O_2$ gas; Tube furnace;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally, and P. D. Yang, Angew. Chem., 115, 3139 (2003).   DOI
2 L. Vayssieres, Adv. Mater., 15, 464 (2003).   DOI
3 Mute A, Peres M, Peiris TC, Louren AC, Jensen LR, Monteiro T. J. Nanosci Nanotechnol., 10, 2669, (2010).   DOI
4 M. H. Huang, Y. Y. Wu, H. N. Feick, N. Tran, E. Weber, and P. D. Yang, Adv. Mater., 13, 113 (2001).   DOI
5 C. G, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, and S. T. Lee. Adv. Funct. Mater., 14, 6 (2004).
6 A. Ueda, T. Nakao, M. Azuma, and T. Kobayashi, Catal. Today, 45, 135 (1998).   DOI
7 H. Muraki, K. Yokota, and Y. Fujitani, Appl. Catal., 48, 93 (1989).   DOI
8 Z. Zhou, C. Zhan, Y. Wang, Y. Su, Z. Yang, and Y. Zhang, Mater. Lett., 65, 832, (2011).   DOI
9 K. B. Kim, Y. H. Jeong, C. I. Kim, Y. J. Lee, J. H. Cho, and J. H. Paik, J. Appl. Phys., 50, 055003 (2011).   DOI
10 C. G, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, and S. T. Lee. Adv. Funct. Mater., 14, 6 (2004).
11 H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Funct. Mater., 14, 2 (2002).
12 X. F. Duan, Y. Huang, J. F. Wang, and C. M. Lieber, Nature, 409, 66 (2001).   DOI
13 M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science, 292, 1897 (2001).   DOI   ScienceOn
14 Y. W. Heo, L. C. Tien, D. P. Norton, S. J. Pearton, B. S. Kang, F. Ren, and J. R. LaRoche, Appl. Phys. Lett., 85, 15 (2004).
15 A. Peiro, P. Ravirajan, K. Govender, D. Boyle, P. O'brien, D. Bradley, J. Nelson, and J. Durrant, J. Mater. Chem., 16, 21 (2006).
16 Z. Y. Fan and J. G. Lu, Appl. Phys. Lett., 86, 12 (2005).
17 Z. R. Dai, Z. W. Pan, and Z. L. Wang, Adv. Funct. Mater., 13, 9 (2003).   DOI
18 X. F. Duan and C. M. Lieber, J. Am. Chem. Soc., 112, 188 (2000).
19 Y. Li, G. W. Meng, and L. D. Zhang, Appl. Phys. Lett., 76 , 2011 (2000).   DOI
20 Y. P. Fang, X. G. Wen, S. H. Yang, Q. Pang, L. Ding, J. N. Wang, and W. K. Ge, J. Sol-Gel Sci. Technol., 36, 234 (2005).