• Title/Summary/Keyword: Plasma Technology

Search Result 3,798, Processing Time 0.032 seconds

CF4/O2/Ar Plasma Resistance of Al2O3 Free Multi-components Glasses (Al2O3 Free 다성분계 유리의 CF4/O2/Ar 내플라즈마 특성)

  • Min, Kyung Won;Choi, Jae Ho;Jung, YoonSung;Im, Won Bin;Kim, Hyeong-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.57-62
    • /
    • 2022
  • The plasma resistance of multi-component glasses containing La, Gd, Ti, Zn, Y, Zr, Nb, and Ta was analyzed in this study. The plasma etching was performed via inductively coupled plasma-reactive ion etching (ICP-RIE) using CF4/O2/Ar mixed gas. After the reaction, the glass with a low fluoride sublimation temperature and high content of P, Si, and Ti elements showed a high etching rate. On the other hand, the glass containing a high fluoride sublimation temperature component such as Ca, La, Gd, Y, and Zr exhibited high plasma resistance because the etch rate was lower than that of sapphire. Glass with low plasma resistance increased surface roughness after etching or nanoholes were formed on the surface, but glass with high plasma resistance showed little change in surface microstructure. Thus, the results of this study demonstrate the potential for the development of plasma-resistant glasses (PRGs) with other compositions besides alumino-silicate glasses, which are conventionally referred to as plasma-resistant glasses.

Fabrication and Simulation of Fluid Wing Structure for Microfluidic Blood Plasma Separation

  • Choe, Jeongun;Park, Jiyun;Lee, Jihye;Yeo, Jong-Souk
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.196-202
    • /
    • 2015
  • Human blood consists of 55% of plasma and 45% of blood cells such as white blood cell (WBC) and red blood cell (RBC). In plasma, there are many kinds of promising biomarkers, which can be used for the diagnosis of various diseases and biological analysis. For diagnostic tools such as a lab-on-a-chip (LOC), blood plasma separation is a fundamental step for accomplishing a high performance in the detection of a disease. Highly efficient separators can increase the sensitivity and selectivity of biosensors and reduce diagnostic time. In order to achieve a higher yield in blood plasma separation, we propose a novel fluid wing structure that is optimized by COMSOL simulations by varying the fluidic channel width and the angle of the bifurcation. The fluid wing structure is inspired by the inertial particle separator system in helicopters where sand particles are prevented from following the air flow to an engine. The structure is ameliorated in order to satisfy biological and fluidic requirements at the micro scale to achieve high plasma yield and separation efficiency. In this study, we fabricated the fluid wing structure for the efficient microfluidic blood plasma separation. The high plasma yield of 67% is achieved with a channel width of $20{\mu}m$ in the fabricated fluidic chip and the result was not affected by the angle of the bifurcation.

Microstructural Changes of the Al2O3 Ceramics during the Exposure to Fluorine Plasma (불소계 플라즈마에 노출된 Al2O3의 미세구조 변화)

  • Kim, Dae-Min;Lee, Sung-Min;Kim, Seong-Won;Kim, Hyung-Tae;Oh, Yoon-Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.405-410
    • /
    • 2008
  • Ceramics are widely used as plasma resistant materials in semiconductor industries. However, the plasma erosion resistance has not been properly evaluated in terms of microstructural changes during the exposure to plasma. In this study, microstructure developments of $Al_2O_3$ were investigated under the fluorine plasma conditions. In polycrystalline alumina, uniform erosion throughout the specimen as well as spatially distributed local erosion were observed. Local erosion was much more severe in lower purity alumina. In contrast to the polycrystalline alumina, only uniform erosion was observed in single crystalline sapphire. These specimens, however, had practically the same erosion depth, which results in the incorrectly similar plasma resistance. This implies that the plasma erosion resistance of ceramics should be evaluated in terms of the microstructural changes, as well as the conventionally accepted erosion depth.

Effect of Ti Intermediate Layer on Properties of HAp Plasma Sprayed Biocompatible Coatings

  • Take, Seisho;Otabe, Tusyoshi;Ohgake, Wataru;Atsumi, Taro
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.51-56
    • /
    • 2020
  • The objective of this study was to improve properties of plasma sprayed HAp layer to titanium substrate by introducing an intermediate layer with two different methods. Before applying Zn doped HAp coating on titanium substrate, an intermediate layer was introduced by titanium plasma spray or titanium anodization. Heat treatments were conducted for some samples after titanium intermediate layer was formed. Zn doped HAp top layer was applied by plasma spraying. Three-point bending test and pull-off adhesion test were performed to determine the adhesion of Zn doped HAp coatings to substrates. Long-term credibility of Zn doped HAp plasma sprayed coatings on titanium was assessed by electrochemical impedance measurements in Hanks' solution. It was found that both titanium plasma sprayed and titanium anodized intermediate layer had excellent credibility. Strong adhesion to the titanium substrate was confirmed after 12 weeks of immersion for coating samples with titanium plasma sprayed intermediate layer. Samples with titanium anodized intermediate layer showed good bending strength. However, they showed relatively poor resistance against pulling off. The thickness of titanium anodized intermediate layer can be controlled much more precisely than that of plasma sprayed one, which is important for practical application.

Plasma for Semiconductor Processing

  • Efremov, Alexandre
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.1-6
    • /
    • 2002
  • Plasma processing of semiconductor materials plays a dominant role in microelectronic technology. During last century, plasma have gone a way from laboratory phenomena to industrial applications due to intensive progress in both scientific and industrial trends. Improvement and development of new experience together with development of plasma theory and plasma diagnostics methods. A most parameters (pressure, flow rate, power density) and various levels of plasma system (energy distribution, volume gas chemistry, transport, heterogeneous effects) to understand the whole process mechanism. It will allow us to choose a correct ways for processes optimization.

  • PDF

Applications of Plasma Modeling for Semiconductor Industry

  • Efremov, Alexandre
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.3-6
    • /
    • 2002
  • Plasma processing plays a significant role in semiconductor devices technology. Development of new plasma systems, such as high-density plasma reactors, required development of plasma theory to understand a whole process mechanism and to be able to explain and to predict processing results. A most important task in this way is to establish interconnections between input process parameters (working gas, pressure, flow rate, input power density) and various plasma subsystems (electron gas, volume and heterogeneous gas chemistry, transport), which are closely connected one with other. It will allow select optimal ways for processes optimization.

  • PDF