Browse > Article

CF4/O2/Ar Plasma Resistance of Al2O3 Free Multi-components Glasses  

Min, Kyung Won (Korea Institute of Ceramic Engineering and Technology)
Choi, Jae Ho (Korea Institute of Ceramic Engineering and Technology)
Jung, YoonSung (Korea Institute of Ceramic Engineering and Technology)
Im, Won Bin (Division of Materials Science and Engineering, Hanyang University)
Kim, Hyeong-Jun (Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Semiconductor & Display Technology / v.21, no.3, 2022 , pp. 57-62 More about this Journal
Abstract
The plasma resistance of multi-component glasses containing La, Gd, Ti, Zn, Y, Zr, Nb, and Ta was analyzed in this study. The plasma etching was performed via inductively coupled plasma-reactive ion etching (ICP-RIE) using CF4/O2/Ar mixed gas. After the reaction, the glass with a low fluoride sublimation temperature and high content of P, Si, and Ti elements showed a high etching rate. On the other hand, the glass containing a high fluoride sublimation temperature component such as Ca, La, Gd, Y, and Zr exhibited high plasma resistance because the etch rate was lower than that of sapphire. Glass with low plasma resistance increased surface roughness after etching or nanoholes were formed on the surface, but glass with high plasma resistance showed little change in surface microstructure. Thus, the results of this study demonstrate the potential for the development of plasma-resistant glasses (PRGs) with other compositions besides alumino-silicate glasses, which are conventionally referred to as plasma-resistant glasses.
Keywords
Plasma resistance glass; Plasma etching; Chemical reactivity; Plasma resistant components;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Radamson, L. Thylen, Monolithic Nanoscale Photonics-Electronics Intergation in Silicon and Other Group IV Elements, Elsevier Science, Netherlands, 2014, pp. 128.
2 T-K. Lin, W-K. Wang, S-Y. Huang, C-T. Tasi, D-S. Wuu, Comparison of Erosion Behavior and Particle Contamination in Mass-Production CF4/O2 Plasma Chambers Using Y2O3 and YF3 Protective Coatings, Nanomaterials. 7 (2017) 183. https://doi.org/10.3390/nano7070183.   DOI
3 S. J. Fonash, An Overview of Dry Etching Damage and Contamination Effects, J. Electrochem. Soc. 137 (1990) 12. https://doi.org/10.1149/1.2086322.   DOI
4 D.M. Kim, Y.S. Oh, S.W. Kim, H.T. Kim, D.S. Lim, S.M. Lee, The erosion behaviors of Y2O3 and YF3 coatings under fluorocarbon plasma, Thin Solid Films 519 (2011) 6698-6702. https://doi.org/10.1016/j.tsf.2011.04.049.   DOI
5 R. Ramos, G. Cunge, B. Pelissier, O. Joubert, Cleaning aluminum fluoride coatings from plasma reactor walls in SiCl4/Cl2 plasmas, Plasma Sources Sci. Technol. 16 (2007) 711-715. https://doi.org/10.1088/0963-0252/16/4/004.   DOI
6 J.H. Choi, H. Na, J. Park, H.J. Kim, Plasma corrosion resistance of aluminosilicate glasses containing Ca, Y and B under fluorocarbon plasma with Ar+, Journal of Non-Crystalline Solids. 521 (2019) 119498. https://doi.org/10.1016/j.corsci.2018.10.015.   DOI
7 Y.C. Kim, J. Oishi, S.H. Kang, The enthalpies of formation of gadolinium and ytterbium trifluorides, The Journal of Chemical Thermodynamics. 10 (1978) 975-981. https://doi.org/10.1016/0021-9614(78)90059-9   DOI
8 M.R. Ackerson, G.D. Cody, B.O. Mysen, Si solid state NMR and Ti K-edge XAFS pre-edge spectroscopy reveal complex behavior of Ti in silicate melts, Progress in Earth and Planetary Science, 7:14 (2020) https://doi.org/10.1186/s40645-020-00326-2   DOI
9 H. Shih, A Systematic Study and Characterization of Advanced Corrosion Resistance Materials and Their Applications for Plasma Etching Processes in Semiconductor Silicon Wafer Fabrication, Corrosion Resistance. 1 (2012). https://doi.org/10.5772/31992.   DOI
10 J. Kitamura, H. Mizuno, N. Kato, I. Aoki, Plasma-Erosion Properties of Ceramic Coating Prepared by Plasma Spraying, Mater. Trans. 47 (2006) 1677-1683. https://doi.org/10.2320/matertrans.47.1677.   DOI
11 J. H. Choi, H. B. Park, H. Na, H. J. Kim, Plasma corrosion resistance of RO-Al2O3-SiO2 (R: Alkaline earth) under fluorocarbon plasma with Ar+: II. Plasma resistant glass, Corrosion Science. 146 (2019) 247-253. https://doi.org/10.1016/j.jnoncrysol.2019.119498.   DOI
12 J.H. Choi, J.S. Yoon, Y.S. Jung, K.W. Min, W.B. Im, H.J. Kim, Analysis of plasma etching resistance for commercial quartz glasses used in semiconductor apparatus in fluorocarbon plasma, Materials Chemistry and Physics. 272 (2021) 0254-0584. https://doi.org/10.1016/j.matchemphys.2021.125015   DOI
13 H. Na, J. Park, S.C. Choi, H.J. Kim, The effect of composition of plasma resistance of CaO-Al2O3-SiO2 glasses under Fluorocarbon Plasma with Ar+, Applied Surface Science. 476 (2019) 663-667. https://doi.org/10.1016/j.apsusc.2019.01.133.   DOI
14 J.H. Choi, Y.S. Han, S.M. Lee, H.B. Park, S.C. Choi, H.J. Kim, Characteristics of Carbon Tetrafluoride Plasma Resistance of Various Glasses, J. Korean Ceram. Soc. 53 (2016) 700-706. http://dx.doi.org/10.4191/kcers.2016.53.6.700   DOI
15 Y.S. Jung, K.W. Min, J.H. Choi, J.S. Yoon, W.B. Im, H.J. Kim, Plasma-resistant characteristics according to sintering conditions of CaO-Al2O3-SiO2 glass coating layer, J. Korean Ceram. Soc. 59 (2022) 86-93. https://doi.org/10.1007/s43207-021-00149-x   DOI
16 K. Miwa, T. Sawai, M. Aoyama, F. Inoue, A. Oikawa, and K. Imaoka, Particle Reduction using Y2O3 Material in an Etching Tool, IEEE Int. Symp. Semicond. Manuf. Confer. Proc., San Jose, CA, (2005) 479-482.
17 W.M. Haynes, D.R. Lide, T.J. Bruno, CRC Handbook of Chemistry and Physics, CRC Press, United States, 2016, pp. 746, 749, 751, 774, 776, 778, 784, 786, 790, 797, 798.
18 D.M. Kim, S.H. Lee, W.B. Alexander, K.B. Kim, Y.S. Oh, S.M. Lee, X-Ray Photoelectron Spectroscopy Study on the Interaction of Yttrium-Aluminum Oxide with Fluorine-Based Plasma, J. Am. Ceram. Soc. 94 (2011) 3455-3459. https://doi.org/10.1111/j.1551-2916.2011.04589.x   DOI
19 S.A. Utlak, T.M. Besmann, Thermodynamic assessment of the Na2O-Al2O3-SiO2-B2O3 pseudo-binary and - ternary systems, The Journal of Chemical Thermodynamics. 130 (2019) 251-268. https://doi.org/10.1016/j.jct.2018.09.001   DOI
20 N. ITO, T. Moriya, F. Uesugi, M. Matsumoto, S. Liu, Y. Kitayama, Reduction of particle contamination in plasma-etching equipment by dehydration of chamber wall, Jpn J Appl Phys. 47 (2008) 5R. https://doi.org/10.1143/JJAP.47.3630.   DOI
21 J. Iwasawa, R. Nishimizu, M. Tokita, M. Kiyohara, Plasma-Resistant Dense Yttrium Oxide Film Prepared by Aerosol Deposition Process, J. Am. Ceram. Soc. 90 (2007) 2327-2332. https://doi.org/10.1111/j.1551-2916.2007.01738.   DOI
22 Y.C. Cao, L. Zhao, J. Luo, K. Wang, B.P. Zhang, H. Yokota, Y. Ito, J.F. Li, Plasma etching behavior of Y2O3 ceramics: Comparative study with Al2O3, Appl. Surf. Sci. 366 (2016) 304-309. https://doi.org/10.1016/j.apsusc.2016.01.092.   DOI
23 C.S. Kim, M.J. Kim, H. Cho, T.E. Park, Y.H. Yun, Fabrication and plasma resistance of Y2O3 ceramics, Ceram. Int. 41 (2015) 12757-12762. https://doi.org/10.1016/j.ceramint.2015.06.109.   DOI
24 J.S. Reed, Principles of Ceramics Processing, John Wiley & Sons Inc, New York, 1995, pp. 35-50.
25 D. M. Kim, K. B. Kim, S. Y. Yoon, Y. S. Oh, H. T. Kim, S.M. Lee, Effects of artificial pores and purity on the erosion behaviors of polycrystalline Al2O3 ceramics under fluorine plasma, J. Ceram. Soc. Jpn. 117 (2009) 863-867. https://doi.org/10.2109/jcersj2.117.863.   DOI