• 제목/요약/키워드: Plasma Parameter

검색결과 298건 처리시간 0.023초

On the Etching Mechanism of Parylene-C in Inductively Coupled O2 Plasma

  • Shutov, D.A.;Kim, Sung-Ihl;Kwon, Kwang-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권4호
    • /
    • pp.156-162
    • /
    • 2008
  • We report results on a study of inductively coupled plasma (ICP) etching of Parylene-C (poly-monochloro-para-xylylene) films using an $O_2$ gas. Effects of process parameters on etch rates were investigated and are discussed in this article from the standpoint of plasma parameter measurements, performed using a Langmuir probe and modeling calculation. Process parameters of interest include ICP source power and pressure. It was shown that major etching agent of polymer films was oxygen atoms O($^3P$). At the same time it was proposed that positive ions were not effective etchant, but ions played an important role as effective channel of energy transfer from plasma towards the polymer.

플라즈마 이용 메탄 분해 특성 (Characteristics of $CH_4$ Decomposition by Plasma)

  • 김관태;이대훈;차민석;류정인;송영훈
    • 한국연소학회지
    • /
    • 제10권4호
    • /
    • pp.24-32
    • /
    • 2005
  • Various types of plasma source applied in $CH_4$ decomposition process are compared. DBD by pulse and AC power, spark by pulse and AC power, rotating arc and hollow cathode plasma are chosen to be compared. The results show that $CH_4$ conversion per given unit power is relatively high in hollow cathode plasma and rotating arc that induces rather high temperature condition and that is why both thermal dehydration and plasma induced decomposition contribute for the overall process. In case of DBD wherein high temperature electron and low temperature gas molecule coexist, the process shows low conversion rate, for in rather low temperature condition the contribution of thermal dehydration is lowered. Selectivity of $C_2H_6$ and $C_2H_2$ is shown to be a good parameter of the relative contribution of plasma chemistry in the overall process. From the results we concluded that required condition of plasma source for a cost effective and high yield $CH_4$ decomposition is to have characteristics of both thermal plasma and non thermal plasma in which temperature is high above a certain threshold state for thermal dehydration and electron induced collision is maximized in the same breath.

  • PDF

전극 재료 및 두께가 DBD 플라즈마 액추에이터의 성능에 미치는 영향에 대한 실험적 연구 (Experimental Study on Effect of Electrode Material and Thickness in a Dielectric Barrier Discharge Plasma Actuator Performance)

  • 이승엽;신유환
    • 한국유체기계학회 논문집
    • /
    • 제15권3호
    • /
    • pp.46-50
    • /
    • 2012
  • Plasma actuator makes parallel flow on the wall surface by the interaction between plasma and neutral air particles. Dielectric barrier discharge (DBD) plasma actuator is widely studied as one type of plasma actuators, which consists of one electrode exposed to the environmental gas and the other encapsulated by a dielectric material. This paper is experimentally focused on the performance of DBD plasma actuator mounted on a flat plate, which depends on kinds of the electrode materials, their thicknesses and the supplied voltage including its frequency. We measured the velocity magnitudes of the induced flow by a stagnation probe as a performance parameter of the plasma actuators. The velocity profiles of the flow induced by the plasma actuators are similar in all measurement cases. The magnitude of the induced velocity is strongly influenced by the thickness of the electrodes and the frequency of the input voltage. The performance of DBD plasma actuators is related to the electric properties of the electrode materials such as the ionization energy and the electrical resistivity.

플라즈마 증합법으로 증착된 ppMMA 박막의 유전특성 (Dielectric Properties of Plasma Polymerized ppMMA Thin Film)

  • 임재성;신백균;남광우;김진식;황명환;김종택;이은학;강대하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1408-1409
    • /
    • 2006
  • In this paper, poly methyl methacrylate thin films were deposited on a ITO glass substrate using a plasma polymerization technique. In order to investigate the influence of the plasma coupling method and plasma conditions on the plasma polymerized poly methyl methacrylate (ppMMA) thin film properties, inductively coupled (ICP) and capacitively coupled plasma (CCP) were used to generate the plasma and the plasma parameters were varied. Molecular structures of the ppMMAs were investigated using a Fourier Transform Infrared (FT-IR) spectroscopy. Dielectric constants of the ppMMA thin films were investigated using a impedance analyzer (HP4192A, LF Impedance Analyzer). Current-Voltage (I-V) characteristics of the ppMMA thin films were investigated using a source measurement unit (SMU: Keithley 2400). Relationship between the plasma coupling technique/process parameter and ppMMA thin films properties were investigated.

  • PDF

유체 시뮬레이션을 이용한 유도결합 Ar/CH4 플라즈마의 특성 분석 (Characterization of Inductively Coupled Ar/CH4 Plasma using the Fluid Simulation)

  • 차주홍;이호준
    • 전기학회논문지
    • /
    • 제65권8호
    • /
    • pp.1376-1382
    • /
    • 2016
  • The discharge characteristics of inductively coupled $Ar/CH_4$ plasma were investigated by fluid simulation. The inductively coupled plasma source driven by 13.56 Mhz was prepared. Properties of $Ar/CH_4$ plasma source are investigated by fluid simulation including Navier-Stokes equations. The schematics diagram of inductively coupled plasma was designed as the two dimensional axial symmetry structure. Sixty six kinds of chemical reactions were used in plasma simulation. And the Lennard Jones parameter and the ion mobility for each ion were used in the calculations. Velocity magnitude, dynamic viscosity and kinetic viscosity were investigated by using the fluid equations. $Ar/CH_4$ plasma simulation results showed that the number of hydrocarbon radical is lowest at the vicinity of gas feeding line due to high flow velocity. When the input power density was supplied as $0.07W/cm^3$, CH radical density qualitatively follows the electron density distribution. On the other hand, central region of the chamber become deficient in CH3 radical due to high dissociation rate accompanied with high electron density.

마이크로 유전체장벽 및 마이크로 공격의 방전 및 플라즈마 발생특성 (Characteristics of Discharges and Plasma Generation in Micro-Air gaps and Micro-Dielectric Barriers)

  • 손시호;태흥식;문재덕
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1835-1837
    • /
    • 1996
  • Characteristics of Discharge and nonthermal plasma generation in a micro-air gap spacing between a micro-dielectric barrier and a electrode have been investigated experimentally to chert the potential to be used as a micro-scale nonthermal plasma generator. It is found that the output ozone concentration, as a nonthermal plasma intensity parameter, of the micro-air gnp nonthermal plasma generator depended greatly upon the air gap spacing and thickness of the dielectric barrier. As a result, there is a optimal air gap sparing in the same micro dielectric barrier to generate ozone effectively. And the higher ozone concentration was generated from the thinner micro-barrier.

  • PDF

수치모델을 이용한 ICP-CVD 장치의 증착 균일도 해석 (Numerical Modeling of Deposition Uniformity in ICP-CVD System)

  • 주정훈
    • 한국표면공학회지
    • /
    • 제41권6호
    • /
    • pp.279-286
    • /
    • 2008
  • Numerical analysis is done to investigate which would be the most influencing process parameter in determining the uniformity of deposition thickness in TiN ICP-CVD(inductively coupled plasma chemical vapor deposition). Two configurations of ICP antenna are modeled; side and top planar. Side and top gas inlets are considered with each ICP antenna geometries. Precursor for TiN deposition was TDMAT(Tetrakis Diethyl Methyl Amido Titanium). Two step volume dissociation of TDMAT is used and absorption, desorption and deposition surface reactions are included. Most influencing factors are H and N concentration dissociated by electron impact collisions in plasma volume which depends on the relative positions of gas inlet and ICP antenna generated hot plasma region. Low surface recombination of N shows hollow type concentration, but H gives a bell type distribution. Film thickness at substrate edges is sensitive to gas flow rate and at high pressures getting more dependent on flow characteristics.

저압 열전자 방전 플라즈마의 Monte Carlo 시뮬레이션 (Monte Carlo Simulation of Thermionic Low Pressure Discharge Plasma)

  • 고욱희
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1880-1885
    • /
    • 2012
  • Nonlinear dynamical behaviors in thermionic low pressure discharge are investigated using a particle-in-cell(PIC) simulation. An electrostatic PIC code is developed to model the plasma discharge system including the kinetic effects. The elastic collision, excitation collision, ionization collision, and electron-ion recombination collision are considered in this code. The generated electrons and ions are traced to analyze physical characteristics of the plasma. The simulation results show that the nonlinear oscillation structures are observed for cold plasma in the system and the similar structures are observed for warm plasma with a shift in values of the bifurcation parameter. The detailed oscillation process can be subdivided into three distinct mode; anode-glow, temperature-limited, and double-layer modes.

Measurement of electron density of atmospheric pressure Ne plasma jet by laser heterodyne Interferometer with voltage

  • Lim, Jun Sup;Hong, Young June;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.140.1-140.1
    • /
    • 2015
  • Currently, As Plasma application is expanded to the industrial and medical industrial, Low temperature plasma characteristics became important. Especially in Medical industrial, Low temperature plasma directly adapted to human skin, so their plasma parameter is important. One of the plasma parameters is electron density, some kinds of method to measuring electron density are Thomson scattering spectroscopy and Millimeter-wave transmission measurement. But most methods is expensive to composed of experiment system. Heterodyne interferometer system is cheap and simple to setting up, So we tried to measuring electron density by Laser heterodyne interferometer. To measuring electron density at atmospheric pressure, we need to obtain the phase shift signal. And we use a heterodyne interferometer. Our guiding laser is Helium-Neon laser which generated 632 nm laser. We set up to chopper which can make a laser signal like a pulse. Chopper can make a 4 kHz chopping. We used Needle jet as Ne plasma sources. Interference pattern is changed by refractive index of electron density. As this refractive index change, phase shift was occurred. Electron density is changed from Townsend discharge's electron bombardment, so we observed phenomena and calculated phase shift. Finally, we measured electron density by refractive index and electron density relationship. The calculated electron density value is approximately 1015~1016 cm-3. And we studied electron density value with voltage.

  • PDF