• Title/Summary/Keyword: Plasma Etching

Search Result 1,037, Processing Time 0.028 seconds

Chamber Monitoring with Residual Gas Analysis with Self-Plasma Optical Emission Spectroscopy

  • Jang, Hae-Gyu;Lee, Hak-Seung;Park, Jeong-Geon;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.262.2-262.2
    • /
    • 2014
  • Plasma processing is an essential process for pattern etching and thin film deposition in nanoscale semiconductor device fabrication. It is necessary to maintain plasma chamber in steady-state in production. In this study, we determined plasma chamber state with residual gas analysis with self-plasma optical emission spectroscopy. Residual gas monitoring of fluorocarbon plasma etching chamber was performed with self-plasma optical emission spectroscopy (SPOES) and various chemical elements was identified with a SPOES system which is composed of small inductive coupled plasma chamber for glow discharge and optical emission spectroscopy monitoring system for measuring optical emission. This work demonstrates that chamber state can be monitored with SPOES and this technique can potentially help maintenance in production lines.

  • PDF

Application of the Plasma Etching technique to Fabricating a Concave-type Pt Electrode Capacitor

  • Kim, Hyoun Woo;Hwang, Woon Suk
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.243-246
    • /
    • 2003
  • We have used a plasma etching method in order to develop a concave-type Pt electrode capacitor to overcome the limitation of conventional stack-type capacitor in a small critical-dimension (CD) pattern. We have deposited Pt layer on the concave-type structure made by patterning of $SiO_2$ and subsequently we separated the adjacent nodes by etch-back process with photoresist (PR) as a protecting layer.

Electrical Properties of SBT Thin Films after Etching in Cl$_2$/Ar Inductively Coupled Plasma (Ar/Cl$_2$ 유도결합플라츠마 식각 후 SBT 박막의 전기적 특성)

  • 이철인;권동표;깅창일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.58-61
    • /
    • 2002
  • SBT thin films were etched at different content of Cl$_2$in Cl$_2$/Ar plasma. We obtained the maximum etch rate of 883 ${\AA}$/min at Cl$_2$(20%)/Ar(80%). As Cl$_2$ gas increased in Cl$_2$/Ar plasma, the etch rate decreased. The maximum etch rate may be explained by variation of volume density for Cl atoms and by the concurrence of two etching mechanisms such as physical sputtering and chemical reaction with formation of low-volatile products, which can be desorbed only by ion bombardment. The variation of volume density for Cl, F and Ar atoms and ion current density were measured by the optical emission spectroscopy and Langmuir probe. To evaluate the physical damage due to plasma, X-ray diffraction and atomic force microscopy analysis carried out. After etching process, P-E hysteresis loops were measured by ferroelectric workstation.

  • PDF

The Surface Damage of SBT Thin Film Etched in $Ar/CF_{4}/Cl_{2}$ Plasma ($Ar/CF_{4}/Cl_{2}$ 유도결합 플라즈마에 의한 SBT 박막의 표면 손상)

  • Kim, Dong-Pyo;Kim, Chang-Il;Lee, Cheol-In;Kim, Tae-Hyung;Lee, Won-Jae;Yu, Byung-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.26-29
    • /
    • 2001
  • $SrBi_2Ta_2O_{9}$ thin films were etched at high-density $Cl_2/CF_4/Ar$ in inductively coupled plasma system. The etching of SBT thin films in $Cl_2/CF_4/Ar$ were chemically assisted reactive ion etching. The maximum etch rate was 1300 $\AA$/min at 900W in $Cl_2(20)/CF_4(20)/Ar(80)$. As rf power increase, radicals (F, Cl) and ion(Ar) increase. The influence of plasma induced damage during etching process was investigated in terms of the surface morphology and th phase of X-ray diffraction. The chemical residue was investigated with secondary ion mass sperometry.

  • PDF

Etching Mechanism of Indium Tin Oxide Thin Films using Cl2/HBr Inductively Coupled Plasma

  • Kim, Sung-Ihl;Kwon, Kwang-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.1-4
    • /
    • 2009
  • Dry etching characteristics of indium tin oxide films and etch selectivities over photoresist films were investigated using $Cl_2/HBr$ inductively coupled plasma. From a Langmuir probe diagnostic system, it was observed that while the plasma temperature was kept nearly constant in spite of the change of the HBr mixing ratio, the positive ion density decreases rapidly with increasing the mixing ratio. On the other hand, a quadrupole mass spectrometer showed that the neutral HBr and Br species increased. The etching mechanism in the $HBr/Cl_2$ plasma was analyzed.

Transparent Plasma Display using Transparent Glass Barrier Ribs

  • Lee, Sung-Min;Kim, Seung-Hun;Oh, Seung-Hwa;Shin, Bhum-Jae;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.339-341
    • /
    • 2009
  • A transparent plasma display was developed using transparent glass barrier ribs. Glass barrier ribs were fabricated via a wet etching process. Glass barrier ribs created using a top and bottom etching process showed better transparency compared to those created through only a top etching process. A see-through phosphor layer was obtained by coating the sidewall of the barrier ribs with a conventional opaque phosphor. A fabricated prototype of a transparent plasma display was clear enough to see the background beyond the panel and was well operated by a conventional driving scheme. The maximum luminance was 1150 cd/$m^2$ and the maximum luminous efficacy was 1.35 lm/W in a Ne+13.5%Xe gas-mixture and green cells.

  • PDF

The Surface Damage of SBT Thin Film Etched in $Ar/CF_{4}/Cl_{2}$ Plasma ($Ar/CF_{4}/Cl_{2}$ 유도결합 플라즈마에 의한 SBT 박막의 표면 손상)

  • 김동표;김창일;이철인;김태형;이원재;유병곤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.26-29
    • /
    • 2001
  • SrBi$_2$Ta$_2$$O_{9}$ thin films were etched at high-density C1$_2$/CF$_{4}$/Ar in inductively coupled plasma system. The etching of SBT thin films in C1$_2$/CF$_{4}$/Ar were chemically assisted reactive ion etching. The maximum etch rate was 1300 $\AA$/min at 900W in Cl$_2$(20)/CF$_4$(20)/Ar(80). As f power increase, radicals (F, Cl) and ion(Ar) increase. The influence of plasma induced damage during etching process was investigated in terms of the surface morphology and th phase of X-ray diffraction. The chemical residue was investigated with secondary ion mass spectrometry.y.

  • PDF

Characteristics of Plasma Etching and Plasma Diagnostics of $$CF_4$ Gas with Electric Probe (탐침법에 의한 $$CF_4$ 가스 프라즈마제량의 예정과 에칭 특성)

  • Sung, Yung-Kwon;Shin, Dong-Ryul;Choi, Bok-Gil;Kwon, Kwang-Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.916-922
    • /
    • 1986
  • In this paper, the measurement of RF discharge plasma parameters is studied both analytically and experimentally by the electric probe method. In the measurement using an electric probe, we measure the parameters of plasma in CF4 etching gas and discuss the relations of the results and Si wafer etching. Also, we show that the electric probe method is attractive for various applications.

  • PDF

The Influence of He flow on the Si etching procedure using chlorine gas

  • Kim, J.W.;Park, J.H.;M.Y. Jung;Kim, D.W.;Park, S.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.65-65
    • /
    • 1999
  • Dry etching technique provides more easy controllability on the etch profile such as anisotropic etching than wet etching process and the results of lots of researches on the characterization of various plasmas or ion beams for semiconductor etching have been reported. Chlorine-based plasmas or chlorine ion beam have been often used to etch several semiconductor materials, in particular Si-based materials. We have studied the effect of He flow rate on the Si and SiO2 dry etching using chlorine-based plasma. Experiments were performed using reactive ion etching system. RF power was 300W. Cl2 gas flow rate was fixed at 58.6 sccm, and the He flow rate was varied from 0 to 120 sccm. Fig. 1 presents the etch depth of si layer versus the etching time at various He flow rate. In case of low He flow rate, the etch rate was measured to be negligible for both Si and SiO2. As the He flow increases over 30% of the total inlet gas flow, the plasma state becomes stable and the etch rate starts to increase. In high Ge flow rate (over 60%), the relation between the etch depth and the time was observed to be nearly linear. Fig. 2 presents the variation of the etch rate depending on the He flow rate. The etch rate increases linearly with He flow rate. The results of this preliminary study show that Cl2/He mixture plasma is good candidate for the controllable si dry etching.

  • PDF

Enhancement of Size Gradient of Imprinted Nanopattern by Plasma Etching under a Nonuniform Magnetic Field

  • Lim, Jonghwan;Kim, Soohyun;Kim, Da Sol;Jeong, Mira;Lee, Jae-Jong;Yun, Wan Soo
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.184-189
    • /
    • 2015
  • We report a simple way to enhance the size gradient of an imprinted nanopattern through oxygen plasma etching under a nonuniform magnetic field. A sample substrate was placed next to a magnet, and then a nonuniform magnetic field condition was formed around the sample. Using oxygen plasma etching, a line pattern having an initial width of 273 nm was gradually modified from 248 nm at one end to 182 nm at the other end. Controlling the arrangement of the magnet and sample, we could induce a triangular shape size gradient. We verified that the gradually modified nanopatterns we produced are applicable to continual optical property control, showing a possibility to be utilized for optical components such as gratings and polarizers.