• 제목/요약/키워드: Plant-growth-promoting bacteria

검색결과 174건 처리시간 0.025초

고활성 근권생육촉진균주 Burkholderia pyrrocinia 13-1에 의한 저온조건에서의 유채생육촉진 (Canola Plant Growth Promotion by a Selected Plant Growth Promoting-Rhizobacteria, Burkholderia pyrrocinia Strain 13-1 in the Cold Condition)

  • 이재은;조상민;조영은;박경석
    • 농약과학회지
    • /
    • 제13권4호
    • /
    • pp.262-266
    • /
    • 2009
  • 유채 근권으로 부터 분리된 고활성 근권균 Burkholderia pyrrocinia 13-1는 유채의 생육을 촉진 시키며 특히 저온조건에서의 식물 생육이 우수하다. 이 균주의 유채 처리는 저온조건에서 뿌리의 발근을 좋게 하며 지상부 생육도 다른 대조 균주처리 보다 우수하다. 근권미생물이 가지는 유용 기능 중 식물의 영양 흡수와 병 저항성에 관여하는 시드로포어의 생성, 항균활성과 토양 중 불용화 인산인 칼슘포스페이트를 가용화시켜 식물의 흡수를 돕는 용해 능력이 우수하였다. 이와 같은 특성은 식물의 생육을 촉진시키는 근권세균의 활성기작으로 식물생육 촉진용으로 유채재배에 적용할 수 있을 것으로 기대된다.

느타리버섯 재배 토양으로부터 분리한 Ochrobactrum anthropi A-1의 식물생장촉진효과 (Plant Growth Promotion Effect of Ochrobactrum anthropi A-1 isolated from Soil of Oyster Mushroom Farmhouse)

  • 이창재;이헌학;윤민호
    • 한국버섯학회지
    • /
    • 제13권4호
    • /
    • pp.275-281
    • /
    • 2015
  • An auxin-producing bacteria (A-1) was isolated from soils of Oyster mushroom farmhouse in Daejeon city, South Korea. The strain A-1 was classified as a novel strain of Ochrobactrum anthropi based on a chemotaxanomic and phylogenetic analyses. The isolate was confirmed to produce indole-3-acetic acid (IAA), one of auxin hormones, by TLC and HPLC analyses. The maximum concentration of IAA, $5.6mg\;L^{-1}$ was detected from the culture broth of O. anthropi A-1 incubated for 24 h at $35^{\circ}C$ in R2A broth containing 0.1% L-tryptophan. To investigate the growth-promoting effects to the crops, the culture broth of O. anthropi A-1 was inoculated to water cultures and seed pots of mung bean as well as lettuce. In consequence, the adventitious root induction and root growth of mung bean and lettuce were 2.7 and 1.4 times higher than those of the non-inoculated, respectively.

Plant Growth Promoting Activities of Some Rhizosphere Bacteria and their Effect on Brassica rapa Growth

  • Hussein, Khalid A.;Jung, Yeong Sang;Joo, Jin Ho
    • 한국토양비료학회지
    • /
    • 제47권3호
    • /
    • pp.141-146
    • /
    • 2014
  • The necessity to develop economical and eco-friendly technologies is steadily increasing. Plant growth promoting rhizomicrobial strains PGPR are a group of microorganisms that actively colonize plant roots and increase plant growth and yield. Pot experiments were used to investigate the potential of some rhizobacterial strains to enhance the Brassica rapa growth. Microbial strains were successfully isolated from the rhizosphere of Panax ginseng and characterized based on its morphological and plant growth promotion characters. Surface disinfected seeds of Wisconsin Fast B. rapa were inoculated with the selected PGPR microorganisms. The different pots treatments were inoculated by its corresponding PGPR ($10^7cfu\;mL^{-1}$) and incubated in the growth chamber at $25^{\circ}C$ and 65% RH, the light period was adjusted to 24 hours (day). NPK chemical fertilizer and trade product (EMRO, USA) of effective microorganisms as well as un-inoculated control were used for comparison. Plants harvested in 40 days were found to have significant increase in leaf chlorophyll units and plant height and also in dry weight of root and shoot in the inoculated seedlings. Root and shoot length and also leaf surface area significantly were increased by bacterial inoculation in sterile soil. The study suggests that Rhodobacter capsulatus and Azotobacter chroococcum are beneficial for B. rapa growth as they enhance growth and induced IAA production and phosphorus solubilization. This study presents some rhizomicrobial strains that significantly promoted growth of Wisconsin Fast Plant B. rapa in pot experiment under different soil conditions.

Characterization of auxin production plant growth promotion by a bacterium isolated from button mushroom compost

  • Yoo, Ji-Yeong;Lee, Heon-Hak;Han, Chang-Hoon;Yoon, Min-Ho
    • 한국버섯학회지
    • /
    • 제15권1호
    • /
    • pp.8-13
    • /
    • 2017
  • An auxin-producing bacterial strain, designated 4-3, was isolated from waste button mushroom compost in Boryeong-si, Chungnam. The strain 4-3 was classified as a novel strain of Leucobacter tardus, based on chemotaxonomic and phylogenetic analyses. TLC and HPLC the isolated L. tardus strain 4-3 produced indole-3-acetic acid (IAA), the auxin. Maximum IAA productionof $94.3mg\;L^{-1}$ was detected for bacteria cultured in R2A medium with 0.1% l-tryptophan, incubated for 24 h at $35^{\circ}C$. Negative correlationwas observed between IAA production and pH of the culture medium, indicating that the increase inIAA caused acidification ofthe medium. The effect of supplementation with varying concentrations of l-tryptophan, a known precursor of IAA, was also assessed. production was maximal at 0.1% l, but decreased at lconcentrations above 0.2%. To investigate the plant growth-promoting effects of the bacterium, L. tardus strain 4-3 culture broth was used to inoculate water cultures and seed pots of mung bean. We found thatadventitious root induction and root growth were 2.2-times higher in thethan in the non-inoculated plants.

Isolation and Characterization of Pb-Solubilizing Bacteria and Their Effects on Pb Uptake by Brassica juncea: Implications for Microbe-Assisted Phytoremediation

  • Yahaghi, Zahra;Shirvani, Mehran;Nourbakhsh, Farshid;de la Pena, Teodoro Coba;Pueyo, Jose J.;Talebi, Majid
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권7호
    • /
    • pp.1156-1167
    • /
    • 2018
  • The aim of this study was to isolate and characterize lead (Pb)-solubilizing bacteria from heavy metal-contaminated mine soils and to evaluate their inoculation effects on the growth and Pb absorption of Brassica juncea. The isolates were also evaluated for their plant growth-promoting characteristics as well as heavy metal and salt tolerance. A total of 171 Pb-tolerant isolates were identified, of which only 15 bacterial strains were able to produce clear haloes in solid medium containing PbO or $PbCO_3$, indicating Pb solubilization. All of these 15 strains were also able to dissolve the Pb minerals in a liquid medium, which was accompanied by significant decreases in pH values of the medium. Based on 16S rRNA gene sequence analysis, the Pb-solubilizing strains belonged to genera Bacillus, Paenibacillus, Brevibacterium, and Staphylococcus. A majority of the Pb-solubilizing strains were able to produce indole acetic acid and siderophores to different extents. Two of the Pb-solubilizing isolates were able to solubilize inorganic phosphate as well. Some of the strains displayed tolerance to different heavy metals and to salt stress and were able to grow in a wide pH range. Inoculation with two selected Pb-solubilizing and plant growth-promoting strains, (i.e., Brevibacterium frigoritolerans YSP40 and Bacillus paralicheniformis YSP151) and their consortium enhanced the growth and Pb uptake of B. juncea plants grown in a metal-contaminated soil. The bacterial strains isolated in this study are promising candidates to develop novel microbe-assisted phytoremediation strategies for metal-contaminated soils.

토마토 뿌리에서 분리한 식물생육촉진 세균 Bacillus velezensis T20E-257균주의 유전체 염기서열 (Complete genome sequence of Bacillus velezensis T20E-257, a plant growth-promoting bacterium, isolated from tomato (Solanum lycopersicum L.) root)

  • 이신애;김상윤;상미경;송재경;원항연
    • 미생물학회지
    • /
    • 제53권4호
    • /
    • pp.342-343
    • /
    • 2017
  • 토마토 뿌리에서 분리한 Bacillus velezensis T20E-257 균주는 식물촉진효과가 있었고, 본 연구에서 T20E-257 균주의 유전체 서열을 해독하였다. 유전체 초안에서 포함된 2개 contig는 총 염기서열이 3,900,066 bp고, G + C content가 46.7%이었다. 유전체에서 단백질 유전자 3,708개, rRNA 유전자 27개, tRNA 유전자 86개를 확인하였다. 항균활성을 가지는 2차 대사산물 생합성 관련 유전자군과 식물생육촉진에 관여하는 IAA와 2,3-butadiol 생합성 관련 유전자를 T20E- 257 균주 유전체에서 확인하였다.

인삼토양 내 근권세균의 다양성 및 식물에의 유용 특성 (Molecular Diversity of Rhizobacteria in Ginseng Soil and Their Plant Benefiting Attributes)

  • 홍은혜;이선희;알 타미즈 벤단;이영하
    • 미생물학회지
    • /
    • 제48권4호
    • /
    • pp.246-253
    • /
    • 2012
  • 연령을 달리하는 인삼토양 내 근권세균의 다양성과 이들 세균이 갖고 있는 식물생장에 유용한 특성에 대하여 조사하였다. 인삼 근권으로부터 총 15개 속에 포함되는 143 균주를 분리하였다. 인삼 연령에 따른 세균 군집의 변화가 있었으나, 분리 균주의 58%가 Firmicutes에 속하였다. 특히 Bacillus는 연령에 관계없이 가장 우점하는 속으로 나타났다. 이들 분리 균주 중 30개의 균주를 선발하여 세포벽 분해효소 분비, 인돌아세트산 생성, siderophore 생성, 인 가용화, 식물병원성 곰팡이의 저해능 등에 대하여 평가한 결과, 다수의 균주가 식물생장을 촉진할 수 있는 기능적 특성을 갖고 있었다. 이 중에서도 모든 조사 항목에 대하여 양성 반응을 보인 B. subtilis, B. amyloliquefaciens, B. velezensis, B. licheniformis 균주는 향후 인삼 경작을 위한 생장 촉진 미생물제제로 활용가치가 높을 것으로 기대된다.

식물성장근권 미생물 적용에 의한 Zn 오염 논토양 식물상정화증진기법 적용에 관한 연구 (A Study on the Application of Enhanced Phytoremediation with Plant Growth Promoting Rhizobacteria for Zn Contaminated Rice Paddy Soil)

  • 김태성;최상일;양재규;이인숙;배범한
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권3호
    • /
    • pp.15-26
    • /
    • 2010
  • The contaminated soils near abandoned mine area can threaten human's health and natural ecosystems through multiple pathways. Remediation of contaminated soil using physicochemical technologies are expensive and destructive of soil environments. On the other hand, environmentally friendly approach that maximize biological remediation, that is, phytoremediation, attracts attention as a low carbon green growth technology. This research is a field demonstration study, focused on the enhanced phytoremediation by bioaugmenting PGPR(Plant Growth Promoting Rhizobacteria)that is helpful on the growth of and heavy metal removal by Echinochloa frumentacea, at a Zn contaminated paddy soil near SamBo mine at Hwasung, Kyunggi. The results showed that the zinc removal by the plant with PSM(Phosphate Solubilizing Bacteria), a kind of PGPR, was three times higher than that by the control. The results are valuable as it is a result from the field-scale technology demonstration. The results also implies that application of PGPR can enhance heavy metal removal from contaminated soil in full scale phytoremediation using Echinochloa frumentacea.

Plant Growth Substances Produced by Methylobacterium spp. and Their Effect on Tomato (Lycopersicon esculentum L.) and Red Pepper (Capsicum annuum L.) Growth

  • Ryu, Jeong-Hyun;Madhaiyan, Munusamy;Poonguzhali, Selvaraj;Yim, Woo-Jong;Indiragandhi, Pandiyan;Kim, Kyoung-A;Anandham, Rangasamy;Yun, Jong-Chul;Kim, Kye-Hoon;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권10호
    • /
    • pp.1622-1628
    • /
    • 2006
  • Bacteria from the Methylobacterium genus, called pink-pigmented facultative methylotrophic bacteria (PPFMs), are common inhabitants of plants, potentially dominating the phyllosphere population, and are also encountered in the rhizosphere, seeds, and other parts of plants, being versatile in nature. The consistent success of the Methylobacterium plant association relies on methylotrophy, the ability to utilize the one-carbon compound methanol emitted by plants. However, the efficiency of Methylobacterium in plant growth promotion could be better exploited and thus has attracted increasing interest in recent years. Accordingly, the present study investigated the inoculation effects of Methylobacterium sp. strains CBMB20 and CBMB 110 on seed imbibition to tomato and red pepper on the growth and accumulation of phytohormone levels under gnotobiotic conditions. Seeds treated with the Methylobacterium strains showed a significant increase in root length when compared with either the uninoculated control or Methylobacterium extorquens $miaA^-$ knockout mutanttreated seeds. Extracts of the plant samples were used for indole-3-acetic acid (IAA), trans-zeatin riboside (t-ZR), and dihydrozeatin riboside (DHZR) assays by immunoanalysis. The treatment with Methylobacterium sp. CBMB20 or CBMB 110 produced significant increases in the accumulation of IAA and the cytokinins t-ZR and DHZR in the red pepper extracts, whereas no IAA was detected in the tomato extracts, although the cytokinin concentrations were significantly increased. Therefore, this study proved that the versatility of Methylobacterium as a plant-growth promoting bacteria could be better exploited.

Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance

  • Bhagat, Neeta;Raghav, Meenu;Dubey, Sonali;Bedi, Namita
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권8호
    • /
    • pp.1045-1059
    • /
    • 2021
  • Various abiotic stressors like drought, salinity, temperature, and heavy metals are major environmental stresses that affect agricultural productivity and crop yields all over the world. Continuous changes in climatic conditions put selective pressure on the microbial ecosystem to produce exopolysaccharides. Apart from soil aggregation, exopolysaccharide (EPS) production also helps in increasing water permeability, nutrient uptake by roots, soil stability, soil fertility, plant biomass, chlorophyll content, root and shoot length, and surface area of leaves while also helping maintain metabolic and physiological activities during drought stress. EPS-producing microbes can impart salt tolerance to plants by binding to sodium ions in the soil and preventing these ions from reaching the stem, thereby decreasing sodium absorption from the soil and increasing nutrient uptake by the roots. Biofilm formation in high-salinity soils increases cell viability, enhances soil fertility, and promotes plant growth and development. The third environmental stressor is presence of heavy metals in the soil due to improper industrial waste disposal practices that are toxic for plants. EPS production by soil bacteria can result in the biomineralization of metal ions, thereby imparting metal stress tolerance to plants. Finally, high temperatures can also affect agricultural productivity by decreasing plant metabolism, seedling growth, and seed germination. The present review discusses the role of exopolysaccharide-producing plant growth-promoting bacteria in modulating plant growth and development in plants and alleviating extreme abiotic stress condition. The review suggests exploring the potential of EPS-producing bacteria for multiple abiotic stress management strategies.