Browse > Article
http://dx.doi.org/10.4014/jmb.2105.05009

Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance  

Bhagat, Neeta (Amity Institute of Biotechnology, Amity University Uttar Pradesh)
Raghav, Meenu (Amity Institute of Biotechnology, Amity University Uttar Pradesh)
Dubey, Sonali (Amity Institute of Biotechnology, Amity University Uttar Pradesh)
Bedi, Namita (Amity Institute of Biotechnology, Amity University Uttar Pradesh)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.8, 2021 , pp. 1045-1059 More about this Journal
Abstract
Various abiotic stressors like drought, salinity, temperature, and heavy metals are major environmental stresses that affect agricultural productivity and crop yields all over the world. Continuous changes in climatic conditions put selective pressure on the microbial ecosystem to produce exopolysaccharides. Apart from soil aggregation, exopolysaccharide (EPS) production also helps in increasing water permeability, nutrient uptake by roots, soil stability, soil fertility, plant biomass, chlorophyll content, root and shoot length, and surface area of leaves while also helping maintain metabolic and physiological activities during drought stress. EPS-producing microbes can impart salt tolerance to plants by binding to sodium ions in the soil and preventing these ions from reaching the stem, thereby decreasing sodium absorption from the soil and increasing nutrient uptake by the roots. Biofilm formation in high-salinity soils increases cell viability, enhances soil fertility, and promotes plant growth and development. The third environmental stressor is presence of heavy metals in the soil due to improper industrial waste disposal practices that are toxic for plants. EPS production by soil bacteria can result in the biomineralization of metal ions, thereby imparting metal stress tolerance to plants. Finally, high temperatures can also affect agricultural productivity by decreasing plant metabolism, seedling growth, and seed germination. The present review discusses the role of exopolysaccharide-producing plant growth-promoting bacteria in modulating plant growth and development in plants and alleviating extreme abiotic stress condition. The review suggests exploring the potential of EPS-producing bacteria for multiple abiotic stress management strategies.
Keywords
Exopolysaccharides (EPS); drought; abiotic stress; salinity; metal; biofilm;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Igiehon NO, Babalola OO, Aremu BR. 2019. Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiol. 19: 159.   DOI
2 Lu X, Liu SF, Yue L, Zhao X, Zhang Y-B, Xie Z-K, et al. 2018. Epsc involved in the encoding of exopolysaccharides produced by Bacillus amyloliquefaciens FZB42 act to boost the drought tolerance of Arabidopsis thaliana. Int. J. Mol. Sci. 19: 3795.   DOI
3 Wang DC, Jiang CH, Zhang LN, Chen L, Zhang XY, Guo JH. 2019. Biofilms positively contribute to Bacillus amyloliquefaciens 54-induced drought tolerance in tomato plants. Int. J. Mol. Sci. 20: 6271.   DOI
4 Deng J, Orner EP, Chau JF, Anderson EM, Kadilak AL, Rubinstein RL, et al. 2015. Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biol. Biochem. 83: 116-124.   DOI
5 Ma Y, Dias MC, Freitas H. 2020. Drought and salinity stress responses and microbe-induced tolerance in plants. Front. Plant Sci. 11: 591911.   DOI
6 Parida S K, and Das A B. 2005. Salt tolerance and salinity effects on plants. Ecotoxicol. Environ. Safety 60: 324-349.   DOI
7 Ashraf M, Ahmad MSA, Ozturk M, Aksoy A. 2012. Crop improvement through different means. In Ashraf et al. (eds.), pp. 1-15. Crop Production for Agricultural Improvement, Springer.
8 Pawar ST, Amarsinh A. Bhosale, Trishala B. Gawade, Nale TR. 2013. Isolation, screening and optimization of exopolysaccharide producing bacterium from saline soil. J. Microbiol. Biotechnol. Res. 3: 24-31.
9 Ashraf M, Berge SH, Mahmood OT. 2004. Inoculating wheat seedling with exopolysaccharides-producing bacteria restrict sodium uptake and stimulates plant growth under salt stress. Biol. Fertil Soils 40: 157-162.
10 Arora M, Kaushik A, Rani N, Kaushik CP. 2010. Effect of cyanobacterial exopolysaccharides on salt stress alleviation and seed germination. J. Environ. Biol. 31: 701-704.
11 Violante A, Cozzolino V, PerelomovL, Caporale AG, Pigna M. 2010. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil. Sci. Plant Nutr. 10: 268-292.
12 Mishra J, Singh R, Arora N K. 2017. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front. Microbiol. 8: 1706.   DOI
13 Niu X, Song L, Xiao Y, Ge W. 2018. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semiarid agroecosystem and their potential in alleviating drought stress. Front. Microbiol. 8: 2580.   DOI
14 Shaik. Zulfikar Ali, Vardharajula Sandhya, Minakshi Grover, Venkateswar Rao Linga, Venkateswarlu Bandi. 2011. Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J. Plant Interact. 4: 239-246.
15 Vejan P, Abdullah R, Khadiran T, Ismail S. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability-A review. Molecules 21: 573.   DOI
16 Naseem H, Bano A. 2014. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J. Plant Interact. 9: 689-701.   DOI
17 Abd El-Daim IA, Bejai S, Meijer J. 2019. Bacillus velezensis 5113 Induced metabolic and molecular reprogramming during abiotic stress tolerance in wheat. Sci. Rep. 9: 16282.   DOI
18 Roca C, Alves V D, Freitas F, Reis MA. 2015. Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. Front. Microbiol. 6: 288.   DOI
19 Farooq M, Bramley H, Palta JA, Siddique KHM. 2011. Heat stress in wheat during reproductive and grain-filling phases. CRC Crit. Rev. Plant Sci. 30: 491-507.   DOI
20 Qurashi AW, Sabri AN. 2012a. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz. J. Microbiol. 43: 1183-1191.   DOI
21 Minah B, Hazarin Subair F. 2015. Isolation and Screening bacterial exopolysaccharide (EPS) from potato rhizosphere in highland and the potential as a producer indole acetic acid (IAA). Procedia Food Sci. 3: 74-81.   DOI
22 Tewari S, Arora NK. 2014a. Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr. Microbiol. 69: 484-494.   DOI
23 Mishra A, Jha B. 2013. Microbial exopolysaccharides. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes. Springer, Berlin, Heidelberg.
24 Vardharajula S, Ali S Z. 2015. The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation. Microbiology 84: 512-519.   DOI
25 Saha I, Datta S, Biswas D. 2020. Exploring the role of bacterial extracellular polymeric substances for sustainable development in agriculture. Curr. Microbiol. 77: 3224-3239.   DOI
26 Mathur P, Roy S. 2021. Insights into the plant responses to drought and decoding the potential of root associated microbiome for inducing drought tolerance. Physiol. Plant. 172: 1016-1029.   DOI
27 Mukherjee P, Mitra A, Roy M. 2019. Halomonas Rhizobacteria of Avicennia marina of indian sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production. Front. Microbiol. 10: 1207.   DOI
28 Gupta B, Huang B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. Genomics 2014: 701596.   DOI
29 Rosier A, Medeiros FHV, Bais HP. 2018. Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant Soil 428: 35-55.   DOI
30 FAO. 2020. World Food and Agriculture - Statistical Yearbook 2020. Rome.
31 Cho SM, Anderson AJ, Kim YC. 2018. Extracellular polymeric substances of Pseudomonaschlororaphis 06 induce systemic drought tolerance in plants. Res. Plant Dis. 24: 242-247.2018.   DOI
32 Lloret J, Wulff BB, Rubio JM, Downie J A, Bonilla I, Rivilla R. 1998. Exopolysaccharide II production is regulated by salt in the halotolerant strain Rhizobium meliloti EFB1. Appl. Environ. Microbiol. 64: 1024-1028.   DOI
33 Ha-Tran DM, Nguyen TTM, Hung SH, Huang E, Huang CC. 2021. Roles of plant growth-promoting Rhizobacteria (PGPR) in stimulating salinity stress defense in plants: a review. Int. J. Mol. Sci. 22: 3154.   DOI
34 Yasmeen T, Ahmad A, Arif MS, Mubin M, Rehman K, Shahzad SM, et al. 2020. Biofilm forming rhizobacteria enhance growth and salt tolerance in sunflower plants by stimulating antioxidant enzymes activity. Plant Physiol. Biochem. 156: 242-256.   DOI
35 Bhat MA, Kumar V, Bhat MA, Wani IA, Dar FL, Farooq I, et al. 2020. Mechanistic Insights of the interaction of Plant Growth-Promoting Rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress. Front. Microbiol. 20: 1952.
36 Atouei M T, Pourbabaee A A, Shorafa M. 2019. Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria. Ir. J. Sci. Technol. Trans. A. 43: 2725-2733.   DOI
37 Chu TN, Tran BTH, Van Bui L, Hoang MTT. 2019. Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana. BMC Res. Notes 12: 11   DOI
38 Sultana S, Paul SC, Parveen S, Alam S, Rahman N, Jannat B, et al. 2020. Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress. Can. J. Microbiol. 66: 144-160.   DOI
39 Liu X, Luo Y, Li Z, Wang J, Wei G. 2017. Role of exopolysaccharide in salt stress resistance and cell motility of Mesorhizobium alhagi CCNWXJ12-2T. Appl. Microbiol. Biotechnol. 101: 2967-2978.   DOI
40 Singh RP, Jha PN.2016. A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Front. Plant Sci. 7: 1890.   DOI
41 Donot F, Fontana A, Baccou JC, Schorr-Galindo S. 2012. Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr. Polym. 87: 951-962.   DOI
42 Alami Y, Achouak W, Marol C, Heulin T. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by exopolysaccharide producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ. Microbiol. 66: 33933398.108.
43 Schmid J, Sieber V, Rehm B. 2015. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front. Microbiol. 6: 496.   DOI
44 Czaczyk K, Myszka K. 2007. Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish J. Environ. Stud. 16: 799-806.
45 Sutherland IW. 2001. Microbial polysaccharides from Gram-negative bacteria. Int. Dairy J. 11: 663-674.   DOI
46 Basu A, Prasad P, Das SN, Kalam S, Sayyed RZ, Reddy MS, et al. 2021. Plant Growth Promoting Rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13: 1140.   DOI
47 Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, et al. 2019. Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants (Basel) 30: 8: 34.
48 Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weather disasters on global crop production. Nature 529: 84-87   DOI
49 Etesami H, Beattie GA. 2017. Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. pp. 163-200. In: Probiotics and Plant Health. Springer, Singapore.
50 Abd El-Ghany, Mona FA Attia, Magdy. 2020. Effect of exopolysaccharide-producing bacteria and melatonin on faba bean production in saline and non-saline soil agronomy. 10: 316.   DOI
51 Bashan Y, de-Bashan LE, Prabhu SR. Hernandez J-P. 2014. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil 378: 1-33.   DOI
52 Prabhukarthikeyan SR, Keerthana U, Raguchander T. 2018. Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants. Microbiol. Res. 210: 65-73.   DOI
53 Liu XM, Zhang H. 2015. The effects of bacterial volatile emissions on plant abiotic stress tolerance. Front. Plant Sci. 6: 774.   DOI
54 Khan N, Bano A, Rahman MA, Guo J. 2019. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci. Rep. 9: 2097.   DOI
55 Upadhyay SK, Singh J S, Saxena A K, Singh D P. 2012. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol. 14: 605-611.   DOI
56 Yadav VK, Raghav M, Sharma SK and Bhagat N. 2020. Rhizobacteriome: promising candidate for conferring drought tolerance in crops, J. Pure Appl. Microbiol. 14: 73-92.   DOI
57 Ilyas N, Mumtaz K, Akhtar N, Yasmin H, Sayyed RZ, Khan W, et al. 2020. Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat. Sustainability 12: 8876.   DOI
58 Ghosh D, Gupta A, Mohapatra S. 2019. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. World J. Microbiol. Biotechnol. 35: 90.   DOI
59 Lim JH, Kim SD. 2013. Induction of drought stress resistance by multi-functional PGPR Bacilluslicheniformis K11 in pepper. Plant Pathol. J. 29: 201-208.   DOI
60 Khan N, Bano A, Cura JA. 2020. Role of beneficial microorganisms and salicylic acid in improving rainfed agriculture and future food safety. Microorganisms 8: 1018.   DOI
61 Mohammad A F. 2018. Effectiveness of exopolysaccharides and biofilm forming plant growth promoting rhizobacteria on salinity tolerance of faba bean (Vicia faba L.). Afr. J. Microbiol. Res. 12: 399-404.   DOI
62 Boonchai R, Kaewsuk J, Seo G. 2014. Effect of nutrient starvation on nutrient uptake and extracellular polymeric substance for microalgae cultivation and separation. Desalin. Water Treat. 55: 360-367.   DOI
63 Shultana R, Tan Kee Zuan A, Yusop MR, Mohd Saud H, Ayanda AF. 2020. Effect of Salt-tolerant bacterial inoculations on rice seedlings differing in salt-tolerance under saline soil conditions. Agronomy 10: 1030.   DOI
64 Paulin MM, Novinscak A, Lanteigne C, Gadkar VJ, Filion M.2017. Interaction between 2,4-diacetylphloroglucinol- and hydrogen cyanide-producing Pseudomonas brassicacearum LBUM300 and Clavibacter michiganensis subsp. michiganensis in the tomato rhizosphere. Appl. Environ. Microbiol. 83: e00073-17.
65 Kohler J, Caravaca F. Carrasco L. Roldan A. 2006. Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use Manage. 22: 298-304.   DOI
66 Aureen, LG, Saroj B. 2009. Sand aggregation by exopolysaccharide producing Microbacterium arborescens-AGSB. Curr. Microbiol. 58: 616-621.   DOI
67 Amna Xia Y, Farooq MA, Javed MT, Kamran MA, Mukhtar T, Ali J, et al. 2020. Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum L.) red rot disease resistance. Plant Physiol. Biochem. 151: 1640-1649.
68 Oosten V, Stasio MJ. Cirillo ED, Silletti V, Ventorino S, Pepe V, Raimondi O, Maggio G A. 2018. Root inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to salt stress under low N conditions. BMC Plant Biol. 18: 205.   DOI
69 Kohler J. Fuensanta C. Roldan, A. 2009. Effect of drought on the stability of Rhizosphere soil aggregates of Lactuca sativa grown in a degraded soil inoculated with PGPR and AM fungi. Appl. Soil Ecol. 42: 160-165.   DOI
70 Vardharajula S, Sk Z A. 2014. Exopolysaccharide production by drought tolerant Bacillus spp. and effect on soil aggregation under drought stress. J. Microbiol. Biotechnol. Food Sci. 4: 51-57.   DOI
71 Zubair M, Hanif A, Farzand A, Sheikh T, Khan A R, Suleman M, et al. 2019. Genetic screening and expression analysis of psychrophilic Bacillus spp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat. Microorganisms 7: 337.   DOI
72 Sayyed RZ, Jamadar D, Patel PR. 2011 Production of Exopolysaccharide by Rhizobium sp. Indian J. Microbiol. 51: 294-300.   DOI
73 Adrees M, Ali S, Rizwan M, Zia-Ur-Rehman M, Ibrahim M, Abbas F, et al. 2015. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol. Environ. Saf. 119: 186-97.   DOI
74 Yang A, Akhtar SS, Iqbal S, Amjad M, Naveed M, Zahir ZA, et al. 2016. Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Funct. Plant Biol. 43: 632-642.   DOI
75 Bano A and Fatima M. 2009. Salt tolerance in Zea mays(L). following inoculation with Rhizobium and Pseudomonas. Biol. Fertil. Soils 45: 405-413.   DOI
76 Chibuike GU, Obiora SC 2014. Heavy metal polluted soils: effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014: 1-12.   DOI
77 Abd El-Daim I A, Bejai S, Fridborg I. Meijer J. 2018. Identifying potential molecular factors involved in Bacillus amyloliquefaciens 5113 mediated abiotic stress tolerance in wheat. Plant Biol. 20: 271-279.   DOI
78 Hussain M B, Zahir ZA, Asghar HN, Asghar M. 2014. Can catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat? Int. J. Agric. Biol. 16: 3-13
79 Zhang X, Yang Z, Li Z. Zhang F, Hao L. 2020. Effects of drought stress on physiology and antioxidative activity in two varieties of Cynanchum thesioides. Braz. J. Bot. 43: 1-10.   DOI
80 Kumari P and Khanna V. 2015. ACC-deaminase and EPS production by salt tolerant rhizobacteria augment growth in chickpea under salinity stress. Int. J. Bio-resource Stress Manage. 6: 558-565.   DOI
81 Shin DJ, Yoo SJ, Hong JK, Weon HY, Song J, Sang MK. 2019. Effect of Bacillus aryabhattai H26-2 and B. siamensis H30-3 on Growth promotion and alleviation of heat and drought stresses in Chinese cabbage. Plant Pathol. J. 35: 178-187.   DOI
82 Ali SZ, Sandhya V, Venkateswar Rao L. 2014. Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann. Microbiol. 64: 493-502.   DOI
83 Khan N, Bano A. 2019. Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS One 14: e0222302.   DOI
84 Yadav J, Verma JP, Tiwari K N. 2010. Effect of plant growth promoting Rhizobacteria on seed germination and plant growth Chickpea (Cicer arietinum L) under in vitro condition Biological Forum. Int. J. 2: 15-18.
85 Ansari FA, Ahmad I. 2019. Fluorescent pseudomonas-FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Sci. Rep. 9: 4547.   DOI
86 Batool T, Ali S, Seleiman MF, Naveed NH, Ali A, Ahmed K, et al. 2020. Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci. Rep. 10: 16975   DOI
87 Zainab N, Bashir Ud Din A, Muhammad Tariq Javed M, Siddique Afridi M, Tehmeena Mukhtar, Kamran Muhammad Aqeel, et al. 2020. Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiol. Biochem. 152: 90-99.   DOI
88 Ogden AJ, McAleer JM, Kahn ML. 2019. Characterization of the Sinorhizobium meliloti HslUV and ClpXP protease systems in freeliving and symbiotic states. J. Bacteriol. 201: e00498-18.
89 Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, et al. 2018. Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol. 193: 497-513.   DOI
90 Bensalim, S, Nowak J, Asiedu SK. 1998 A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am. J. Pot. Res. 75: 145-152.   DOI
91 Jittawuttipoka T, Planchon M, Spalla O, Benzerara K, Guyot F, Cassier-Chauvat C , et al. 2013. Multidisciplinary evidences that synechocystis PCC6803 exopolysaccharides operate in cell sedimentation and protection against salt and metal stresses. PLoS One 8: e55564.   DOI
92 Kalita D, Joshi SR. 2017. Study on bioremediation of Lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat. Biotechnol. Rep. 16: 48-57.   DOI
93 Getahun A, Muleta D, Assefa F, Kiros S. 2020. Plant growth-promoting rhizobacteria isolated from degraded habitat enhance drought tolerance of acacia (Acacia abyssinica Hochst. ex Benth.) seedlings. Int. J. Microbiol. 2020: 8897998.
94 Flemming HC, Wingender J. 2001. Relevance of microbial extracellular polymeric substances (EPSs)-parts I: structural and ecological aspects. Water Sci. Technol. 43: 1-8.   DOI
95 Nandal K, Sehrawat AR, Yadav AS, Vashishat RK, Boora KS. 2005. High temperature-induced changes in exopolysaccharides, lipopolysaccharides, and protein profile of heat-resistant mutants of Rhizobium sp. (Cajanus). Microbiol. Res. 160: 367 - 373.   DOI
96 Nguyena HT, Razafindralambo H, Blecker C, N'Yapoa C, Thonart P, Delvignea F. 2014. Stochastic exposure to sub-lethal high temperature enhances exopolysaccharides (EPS) excretion and improves Bifidobacterium bifidum cell survival to freeze-drying. Biochem. Eng. J. 88: 85-94.   DOI
97 Thijs S, Sillen W, Weyens N, Vangronsveld J. 2017. Phytoremediation: 2017. State-of-the-art and a key role for the plant microbiome in future trends and research prospects. Int. J. Phytoremed. 19: 23-38.   DOI
98 Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP. 2016. Potential biotechnological strategies for the clean up of heavy metals and metalloids Front. Plant Sci. 7: 303.   DOI
99 Sayyed RZ, Patel PR, Shaikh SS. 2015. Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil. Indian J. Exp. Biol. 53: 116-123.
100 Miller MB, Bassler BL. 2001.Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165-199.   DOI
101 Kalia VC, Gong C, Patel SKS, Lee JK. 2021. Regulation of plant mineral nutrition by signal molecules. Microorganisms 9: 774.   DOI
102 Sandhya V, Ali SK, Minakshi G, Reddy G. Venkateswarlu B. 2009. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAPP45. Biol. Fertil. Soils 46 : 17-26.   DOI
103 Susilowati A, Puspita AA, and Yunus, A. 2018. Drought resistant of bacteria producing exopolysaccharide and IAA in rhizosphere of soybean plant (Glycine max) in Wonogiri Regency Central Java Indonesia. IOP Conf. Series: Earth and Environmental Science 142 (2018) 012058.
104 Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, et al. 2015. Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stress. J. Plant Growth Regul. 35: 276-300.   DOI
105 Teixeira EI, Fischer G, Velthuizen HV, Walter C, Ewert F. 2013 Global hot spots of heat stress on agricultural crops due to climate change. Agric. Meteorol. 170: 206-215.   DOI
106 Wang J, Song L, Gong X, Xu J, Li M. 2020. Functions of jasmonic acid in plant regulation and response to abiotic stress. Int. J. Mol. Sci. 21: 1446.   DOI
107 FAO (2017). Water Scarcity - One of the greatest challenges of our time. Food and Agriculture Organization of the United Nations.
108 Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, et al. 2017. Crop production under drought and heat stress: plant responses and management options. Front. Plant Sci. 8: 1147.   DOI
109 Nunkaew T, Kantachote D, Nitoda T, Kanzaki H, Ritchie RJ. 2015. Characterization of exopolymeric substances from selected Rhodopseudomonas palustris strains and their ability to adsorb sodium ions. Carbohydr. Polym. 22: 115: 334-41.   DOI
110 Velmourougane K, Prasanna R, Saxena AK 2017. Agriculturally important microbial biofilms: present status and prospects. J. Basic Microbiol. 57: 548-573.   DOI
111 Gontia-Mishra I, Sapre S, Sharma A. Tiwari S. 2016. Amelioration of drought tolerance in wheat by the interaction of plantgrowthpromoting rhizobacteria. Plant Biol.18: 992-1000.   DOI
112 More T T, Yadav J S S, Yan S, Tyagi R D, Surampalli R Y. 2014. Extracellular polymeric substances of bacteria and their potential environmental applications. J. Environ. Manage. 144: 1-25.   DOI
113 Vardharajula S, Ali Sk Z. 2014. Exopolysaccharide production by drought tolerant Bacillus spp. and effect on soil aggregation under drought stress. J. Microbiol. Biotechnol. Food Sci. 4: 51-57.   DOI
114 Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kannaste A, Behers L, et al. 2014. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9: e96086.   DOI
115 Camaille M, Fabre N, Clement C, Ait Barka E. 2021.Advances in wheat physiology in response to drought and the role of plant growth promoting rhizobacteria to trigger drought tolerance. Microorganisms 9: 687.   DOI
116 FAO, ITPS, GSBI, CBD and EC. 2020. State of knowledge of soil biodiversity - Status, challenges and potentialities, Report 2020. Rome, FAO.
117 Ait Barka E, Nowak J, Clement C. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth promoting Rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl. Environ. Microbiol. 72: 7246-7252.   DOI
118 Drogue B, Combes-Meynet E, Moenne-Loccoz Y, Wisniewski-Dye F, Prigent-Combaret C. 2013. "Control of the cooperation between plant growth-promoting rhizobacteria and crops by rhizosphere signals," in Vol. 1 and 2, pp. 281-294. Mol. Microb. Ecol. Rhizosphere, ed. F. J. de Bruijn (NJ, USA: John Wiley & Sons, Inc.).
119 Fernandez O, Theocharis A, Bordiec S, Feil R, Jacquens L, Clement C, et al. 2012. Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol. Plant Microbe Interact. 25: 496-504.   DOI
120 Laspidou CS, Rittmann BE. 2002. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 36: 2711-20.   DOI
121 Prigent-Combaret C. 2013. "Control of the cooperation between plant growth-promoting rhizobacteria and crops by rhizosphere signals," in Vol. 1 and 2, pp. 281-294. Molecular Microbial Ecology of the Rhizosphere, ed. F. J. de Bruijn (NJ, USA: John Wiley & Sons, Inc.).
122 Smith DL, Gravel V, Yergeau E. 2017. Editorial: signaling in the phytomicrobiome. Front. Plant Sci. 8: 611.   DOI
123 Waters CM, Bassler BL. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21: 319-346.   DOI
124 Von Bodman SB, Majerczak DR, Coplin DL. 1998. A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc. Natl. Acad. Sci. USA 95: 7687-7692.   DOI
125 Costa OYA, Raaijmakers JM, Kuramae EE. 2018. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. 23: 1636.
126 Mukhtar T, Rehman S, Smith D, Sultan T, Seleiman M, Alsadon A, et al. 2020. Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide. Producing Bacillus cereus: effects on biochemical profiling. Sustainability 12: 2159.   DOI
127 Wang C, Wang C, Gao YL, Wang Y-P, Guo J-H. 2016. A Consortium of three plant growth-promoting Rhizobacterium strains acclimates Lycopersicon esculentum and confers a better tolerance to chilling stress. J. Plant Growth Regul. 35: 54-64.   DOI
128 Nawaz MS, Arshad A, Rajput L, Fatima K, Ullah S, Ahmad M, et al. 2020. Growth-stimulatory effect of quorum sensing signal molecule N-Acyl-Homoserine lactone-producing multi-trait Aeromonas spp. on wheat genotypes under salt stress. Front. Microbiol. 29: 11:553621.   DOI
129 Ali J, Ali F, Ahmad I, Rafique M, Munis MFH, Hassan SW, et al. 2020. Mechanistic elucidation of germination potential and growth of Sesbania sesban seedlings with Bacillus anthracis PM21 under heavy metals stress: an in vitro study. Ecotoxicol. Environ. Saf. 208: 111769.
130 Nishihata S, Kondo T, Tanaka K. et al. 2018. Bradyrhizobium diazoefficiens USDA110 PhaR functions for pleiotropic regulation of cellular processes besides PHB accumulation. BMC Microbiol. 18: 156.   DOI
131 Ali SZ, Sandhya V, Grover M., Linga VR, Bandi V. 2011. Effect of inoculation with a thermo-tolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J. Plant. Interact. 6: 239-246.   DOI
132 Ayangbenro AS, Babalola OO. 2017. A New strategy for heavy metal polluted environments: a review of microbial biosorbents. Int. J. Environ. Res. Public Health 14: 94.   DOI
133 Kumar S, Thakur P, Kaushal N, Malik J. A Gaur P, Nayyar H. 2013. Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Arch. Agronomy Soil Sci. 59: 823-843.   DOI
134 Devasirvatham V, Gaur PM, Mallikarjuna N, Tokachichu RN, Trethowan, RM, Tan DK. 2012. Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct. Plant Biol. 39: 1009-1018.   DOI
135 Kaur R, Bains TS, Bindumadhava H, Nayyar H. 2015. Responses of mungbean (Vigna radiata L.) genotypes to heat stress: effects on reproductive biology, leaf function and yield traits. Sci. Hortic. 197: 527-541.   DOI
136 Dobrowolski R, Szczes A, Czemierska M, Jarosz-Wikolazka A. 2017. Studies of cadmium (II), lead (II), nickel (II), cobalt (II) and chromium (VI) sorption on extracellular polymeric substances produced by Rhodococcus opacus and Rhodococcus rhodochrous. Bioresour. Technol. 225: 113-120.   DOI
137 Karthik C, Elangovan N, Kumar TS, Govindharaju S, Barathi S, Oves M, et al. 2017. Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium (VI) stress. Microbiol. Res. 204: 65-71.   DOI
138 Prasad PV V, Djanaguiraman M, Perumal R, Ciampitti IA. 2015. Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: sensitive stages and thresholds for temperature and duration. Front. Plant Sci. 6: 1-11.   DOI
139 Sita K, Sehgal A, Kumar J, Kumar S, Singh S, Siddique KH, et al. 2017. Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Front. Plant Sci. 8: 1-26.
140 Bramhachari PV, Nagaraju GP, Kariali E. 2018. Current perspectives on rhizobacterial-EPS interactions in alleviation of stress responses: novel strategies for sustainable agricultural productivity. In Role of Rhizospheric Microbes in Soil; Springer: Singapore. 2018: 33-55.
141 Kaci Y, Heyraud A, Barakat M and Heulin T. 2005. Isolation and identification of an EPS-producing Rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure. Res. Microbiol. 156: 522-531.   DOI
142 Fita A, Rodriguez-Burruezo A, Boscaiu M, Prohens J, Vicente O. 2015. Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front. Plant Sci. 6: 978.
143 Parsell DA, Lindquist S. 1993. The function of heat shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27: 437-496.   DOI
144 Martin JP. 1971 Decomposition and binding action of polysaccharides in soil. Soil Biol. Biochem. 3: 33-41.   DOI
145 Hillel D. 1982. Introduction to soil Physics. Academic Press Limited, 24-28 Oval Road, London.
146 Sengupta S, Dey S. 2019. Microbial exo-polysaccharides (EPS): role in agriculture and environment. Agric. Food 1: 4-8M.
147 Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, et al. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10: 259.   DOI
148 Bouskill, NJ, Wood TE, Baran R, Ye Z, Bowen B P, Lim H, et al. 2016b. Below ground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism. Front. Microbiol. 7: 525.   DOI
149 Konnova Svetlana, Brykova O, Sachkova O. Egorenkova I. Ignatov V. 2001. Protective role of the polysaccharide-containing capsular components of Azospirillum brasilense. Microbiology 70: 436-440.   DOI