• Title/Summary/Keyword: Plant oil

Search Result 1,213, Processing Time 0.034 seconds

Analysis of the Procurement Management Process for the Gas & Oil Plant projects (Gas & Oil 플랜트 조달관리 프로세스 분석)

  • Won, Seo-Kyung;Kang, Min-Woo;Lee, Jun-Bok;Kim, Sun-Kuk;Han, Choong-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.491-494
    • /
    • 2007
  • Recently Gas & Oil plant construction projects are increasing in the world. The EPC (Engineering, Procurement and Construction) company, which participate in the plant projects, should possess the pertinent engineering license and procurement skill to create high added-value. It is because the procurement is very substantial to cover 70% of the total project cost. Nonetheless, there exist various risks involved in the procurement process due to the characteristics of the construction projects with long duration and complicated process as well as the procured goods or services subjected to various logistics. The objective of this paper is to analyze proper process in the procurement and to identify various information and document. Also to analyze procurement process, the principal data are derived from the interview with experts and specialty contractors of plant project. The result of this study would widely be used as a guide to the procurement personnel in forecasting the risks in advance.

  • PDF

Prospect and Situation of Quality Improvement in Oilseed rape (유채 품질 평가 현황과 전망)

  • 장영석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.175-185
    • /
    • 2002
  • Rapeseed(Brassica napus L.) is an important oil crop as a vegetable oil, concentrated feed and industrial materials. The name "canola" was registered in 1979 by the Western Canadian Oilseed Crushers Association to describe "double-low" varieties. Double low indicates that the processed oil contains less than 2% erucic-acid and the meal less than 3mg/g of glucosinolates. Today annual worldwide production of rapeseed is approximately 35 million tons on 24 million hectares. China accounts for 33% of the world production and the European Economic Community for nearly 32%. Canola ranks 3rd in production among the world's oilseed crops following soybeans, sunflowers, peanuts and cottonseed. The recent advances in genomics and in gene function studies has allowed us to understand the detailed genetic basis of many complex traits, such as flowering time, height, and disease resistance. The manipulation of seed oil content via transgene insertion has been one of the earliest successful applications of modern biotechnology in agriculture. For example, the first transgenic crop with a modified seed composition to be approved for unrestricted commercial cultivation in the US was a lauric oil, rape-seed, grown in 1995. There were also some significant early successes, mostly notably the achievement of 40% to 60% lauric acid content in rapeseed oil, which normally accumulates little or no lauric acid. The name "$\textrm{Laurical}^{TM}$" was registered in 1995 by Calgene Inc. Nevertheless, attempts to achieve high levels of other novel fatty acids in seed oils have met with much less success and there have been several reports that the presence of novel fatty acids in transgenic plants can sometimes lead to the induction of catabolic pathways which break down the novel fatty acid, i.e. the plant recognizes the "strange" fatty acid and, far from tolerating it, may even actively eliminate it from the seed oil. It is likely that, in the future, transgenic oil crops and newly domesticated oil crops will both be developed in order to provide the increased amount and diversity of oils which will be required for both edible and industrial use. It is important that we recognize that both approaches have both positive and negative points. It will be a combination of these two strategies that is most likely to supply the increasing demands for plant oils in the 21st century and beyond.ant oils in the 21st century and beyond.

Phytochemical Screening and Antibacterial Activity Coix lacryma-jobi Oil

  • Diningrat, Diky Setya;Risfandi, Marsal;Harahap, Novita Sari;Sari, Ayu Nirmala;Kusdianti, Kusdianti;Siregar, Henny Kharina
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.100-106
    • /
    • 2020
  • Coix lacryma-jobi (Hanjeli) is known to posses anti-microbial properties. Therefore, phytochemical compounds of C. lacryma-jobi have been studied to produce novel antimicrobial agents as treatments against antibiotic-resistant bacteria.The objective of this study was to determine the phytochemical composition and antibacterial activity of the C. lacryma-jobi oil against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The phytochemical composition of the oil was determined via gas chromatography mass spectrophotometry (GC-MS). Moreover, agar disk and agar well diffusion were employed to screen the antibacterial activity of the oil. An agar well diffusion test was implemented to determinate MIC's (minimum inhibitory concentrations). Dodecanoic acid, tetradecanoic acid, 2,3-dihydroxypropylester, 1,3-dioctanoin, N-methoxy-N-methyl-3,4-dihydro-2H-thiopyran6-carboxamide, propanamide, 5-Amino-1-(quinolin-8-yl)-1,2,3-triazole-4-carboxamide, and pyridine were identified in the C. lacryma-jobi oil. The MIC value of the oil was 0.031 g/L and the MBC of the oil was 0.125 g/L effective in all test bacteria. Dodecanoic acid displayed inhibitory activity against gram-positive and gram-negative bacteria. Therefore, our research demonstrated C. lacryma-jobi (Hanjeli) oil exhibited antibacterial activity against E. coli, S. aureus, and B. subtilis. These research suggest that C. lacryma-jobi root oil could be used for medicinal purposes; however clinical and in vivo tests must be performed to evaluate its potential as an antibacterial agent.

Genetics and Breeding for Modified Fatty Acid Profile in Soybean Seed Oil

  • Lee, Jeong-Dong;Bilyeu, Kristin D.;Shannon, James Grover
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.201-210
    • /
    • 2007
  • Soybean [Glycine max(L.) Merr.] oil is versatile and used in many products. Modifying the fatty acid profile would make soy oil more functional in food and other products. The ideal oil with the most end uses would have saturates(palmitic + stearic acids) reduced from 15 to < 7%, oleic acid increased from 23 to > 55%, and linolenic acid reduced from 8 to < 3%. Reduced palmitic acid(16:0) is conditioned by three or more recessive alleles at the Fap locus. QTLs for reduced palmitic acid have mapped to linkage groups(LGs) A1, A2, B2, H, J, and L. Genes at the Fad locus control oleic acid content(18:1). Six QTLs($R^2$=4-25%) for increased 18:1 in N00-3350(50 to 60% 18:1) explained four to 25% of the phenotypic variation. M23, a Japanese mutant line with 40 to 50% 18:1 is controlled by a single recessive gene, ol. A candidate gene for FAD2-1A can be used in marker-assisted breeding for high 18:1 from M23. Low linolenic acid(18:3) is desirable in soy oil to reduce hydrogenation and trans-fat accumulation. Three independent recessive genes affecting omega-3 fatty acid desaturase enzyme activity are responsible for the lower 18:3 content in soybeans. Linolenic acid can be reduced from 8 to about 4, 2, and 1% from copies of one, two, or three genes, respectively. Using a candidate gene approach perfect markers for three microsomal omega-3 desaturase genes have been characterized and can readily be used in for marker assisted selection in breeding for low 18:3.

  • PDF

Uses and Values of Perilla (Perilla frutescens var. frutescens) as a Functional Oil Source (기능성 유지자원으로서의 들깨(Perilla frutescens var. frutescens)의 이용과 가치)

  • Choi, Yong-Soon
    • Korean Journal of Plant Resources
    • /
    • v.28 no.1
    • /
    • pp.135-144
    • /
    • 2015
  • The Korean daily intake of vegetable oils has increased about 2.5-fold from 17 g/day to 46 g/day for the last several decades. Perilla (Perilla frutescens var. frutescens) has been cultivated in Korea for a long time as a dietary oil seed which has the highest content of ${\alpha}$-linolenic acid, accounting for nearly 60%. It is known that the main role of ALA is as a precursor to the longer-chain ${\omega}-3$, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), the metabolic products of ${\alpha}$-linolenic acid (ALA, ${\omega}-3$). Dietary ${\omega}-3$ fatty acids reduce inflammation and the risk of chronic diseases such as heart disease, cancer, and arthritis, but they also may act as functional components for cognitive and behavioral function. Thus, ${\alpha}$-linolenic acid is one of the essential nutrients in modern dietary patterns in which much linoleic acid is consumed. Nevertheless, perilla oil, rich in ${\alpha}$-linolenic acid, can be easily oxidized, giving rise to controversies with respect to shelf life, the deterioration of the product's commercial value, and further related toxicity. Recent research using genetic modifications has tried to develop new plant oil seeds that balance the ratio of ${\omega}-6/{\omega}-3$ fatty acids. Such trials could be a strategy for improving an easily oxidizable property of perilla oil due to high ${\alpha}$-linolenic acid. Alternatively, appropriate application of antioxidant to the oil can be considerable.

Performance of a Screw Press to Extract Soybean Oil and Quality of the Oil as a Fuel (스크류 프레스의 대두유(大豆油) 착유(搾油) 성능(性能)과 착유유(搾油油)의 연료(燃料) 성질(性質))

  • Suh, S.R.;Harris, F.D.
    • Journal of Biosystems Engineering
    • /
    • v.10 no.2
    • /
    • pp.47-54
    • /
    • 1985
  • Performance of a screw press was investigated experimentally with soybeans of various temperatures in order to find out a proper temperature of soybean to extract the oil by the mechanical method. Crude oil extracted by the screw press was chemically analyzed to determine a level of processing the oil for the oil to be used as a fuel for a compression ignition engine. The crude oil was degummed and dried by a plant type laboratory experimental setup to decide whether the processes are effective to improve quality of the oil as a fuel. The degummed oil and the degummed and dried oil were also chemically analyzed and were compared with the crude oil and the commercially degummed and dried soybean oil. The results are as follows: 1. In extraction of soybean oil by a screw press, heating soybeans is effective to increase oil production and to decrease energy consumption of the press. A proper temperature of soybean to extract the oil by the press was determined as about $50^{\circ}C$. 2. Soybean oil production and electric energy consumption of the press are about 83 ml and 58 Wh per 1 kg of soybeans heated to about $50^{\circ}C$, respectively. 3. The quality of crude oil produced by the press is similar to that of the commercially degummed and dried oil. The crude oil does not need to be degummed or dried for use as an engine fuel.

  • PDF

Antifungal Activity of Five Plant Essential Oils as Fumigant Against Postharvest and Soilborne Plant Pathogenic Fungi

  • Lee, Sun-Og;Choi, Gyung-Ja;Jang, Kyoung-Soo;Lim, He-Kyoung;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.97-102
    • /
    • 2007
  • A total of 39 essential oils were tested for antifungal activities as volatile compounds against five phytopathogenic fungi at a dose of 1 ${\mu}l$ per plate. Five essential oils showed inhibitory activities against mycelial growth of at least one phytopathogenic fungus. Origanum vulgare essential oil inhibited mycelial growth of all of the five fungi tested. Both Cuminum cyminum and Eucalyptus citriodora oils displayed in vitro antifungal activities against four phytopathogenic fungi except for Colletotrichum gloeosporioides. The essential oil of Thymus vulgaris suppressed the mycelial growth of C. gloeosporioides, Fusarium oxysporum and Rhizoctonia solani and that of Cymbopogon citratus was active to only F. oxysporum. The chemical compositions of the five active essential oils were determined by gas chromatography-mass spectrometry. This study suggests that both E. citriodora and C. cyminum oils have a potential as antifungal preservatives for the control of storage diseases of various crops.

GC/MS and HPLC/PDA characterization of essential oils and phenolic compounds from the aerial parts of common rue (Ruta graveolens)

  • Chang-Dae Lee;Hak-Dong Lee;Yunji Lee;Hwan Myung Lee;Sanghyun Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.144-152
    • /
    • 2023
  • Two different extraction methods were used to evaluate the medical value of common rue, Ruta graveolens L. (RGL). The results of our 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid assays indicated that the antioxidant activity of RGL essential oil extract obtained through steam distillation was very low, whereas ethanol (EtOH) extracts of RGL showed higher antioxidant activity. RGL essential oil was extracted by steam distillation and characterized by GC/MS analysis. Furthermore, EtOH extracts of RGL were obtained under reflux and analyzed by HPLC/PDA. The GC/MS results indicated that the ketone compounds 2-undecanol acetate, nonyl cyclopropanecarboxylate, and 2-nonanone accounted for more than 70% of the composition of RGL essential oil. The HPLC/PDA analyses indicated that the RGL extracts were rich in phenolic compounds such as protocatechuic acid, rutin, psoralen, xanthotoxin, and bergapten, among which rutin was the most abundant. Collectively, our results demonstrated that RGL contains high levels of phenolic compounds and could thus be commercialized as a valuable plant-derived antioxidant.

A Study on the Characteristics of Exhaust Emissions by Biodiesel Blend Waste Oil in Marine Diesel Engine (선박디젤기관에서 바이오디젤 폐혼합유의 배기배출물특성에 대한 연구)

  • Cho, Sang-Gon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.90-95
    • /
    • 2015
  • Recently worldwide concern and research is being actively conducted on green energy which can reduce environmental pollution. A plant such as the natural rapeseed oil, soybean oil, palm, etc. is used as a bio source in home and industry. Biofuels is a sustainable fuel having economically benefits and decreasing environmental pollution problems caused due to fossil fuel, and it can be applied to the conventional diesel engine without changing the existing institutional structure. Waste vegetable oil contains a high cetane number and viscosity component, the low carbon and oxygen content. A lot of research is progressing about the conversion of waste vegetable oil as renewable clean energy. In this study, waste oil was prepared to waste cooking oil generated from the living environment, and applied to diesel engine to confirm the possibility and cost-effectiveness of biodiesel blend waste oil. As a result, brake specific fuel consumption and NOx was increased, carbon monoxide and soot was decreased.

Occurrence of Earthworm and Effect of Plant Extracts on Earthworm in Golf Courses (골프장에서 지렁이의 발생과 식물체 추출물이 지렁이에 미치는 영향)

  • Lee, Dong-Woon;Hong, Yong;Jung, Young-Hack;Choi, Sung-Hwan;Choo, Ho-Yul;Yun, Jae-Su
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Occurrence of earthworms for turfgrass growing seasons and effect of earthworms by some plant extracts and plant oils in golf courses were investigated at the three locations golf courses in Korea 2005 to 2006. There were no differences in monthly occurrence of earthworm except Anseong Benest Golf Club, namely, Anseong Benest Golf Club was highly occurred in July in 2006. Density of earthworm was not different between fairway and rough in Dongrae Benest Golf Club (opened in 1971) while density was higher in rough than fairway in Anseong Benest Golf Club (opened in 1999) and Gapyeong Benest Golf Club (opened in 2000). In case of Gapyeong Benest Golf Club, earthworm density was higher in old courses than recently opened courses. Effect of plant extracts such as mustard oil, wintergreen oil, Quisqualis indica, Daphne genkwa, Pharbitis nil, Zingiber officinale, Xanthium strumarium, and Camellia sinensis on earthworm, mustard oil, wintergreen oil and tea saponin were highly toxic to earthworm, Eisenia andrei. In the pot experiment, 100% of Eisenia andrei was dead at the treatment of 500-fold of aquatic solution of tea saponin (12.4% a.i.).