• Title/Summary/Keyword: Plant injury

Search Result 397, Processing Time 0.038 seconds

Air Pollutants and Vegetation -With Special Reference to Sulfur Dioxide- (대기오염물질과 식물환경 -아황산에 의한 영향을 중심으로)

  • 이미순
    • Journal of Plant Biology
    • /
    • v.18 no.2
    • /
    • pp.45-52
    • /
    • 1975
  • Effects of air pollutants on vegetation were reviewed and discussed with special reference to sulfur dioxide. Main contents were on the sources, meteorological factors, injury symptoms, relative sensitivity, growth/yield, indicator/diagnosis, combined effects, injury mechanism and effects on plant metabolism, injury diminishing measures, and future research needs.

  • PDF

Investigation of Plant Injury under Ambient Air Pollutants (대기오염물질에 의한 농작물 피해원인 조사)

  • Lee, Jong-Sik;Shin, Joung-Du;Kim, Jin-Ho;Jung, Goo-Bok;Kim, Won-Il;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • In order to find out the cause of plant injury, the symptom of plant injury, and contents of element concerned in the plant were analysed. Also, a case study was conducted to find out the factor of plant injury at a agriculture and industry complex in Gyeongsang province in 2004. The distribution of isomeric curve was made with meteorological data, toxic gas concentration exhausted from pollution source. The general symptom of plant injury by ammonia gas was dry and dead of leaves with white color. At low concentration of ammonia gas, plant leaf showed spots of reddish brown. The characteristic of plant injury symptom by hydrogen fluoride gas was that the symptom was appeared at the edge of leaf. The isomeric curve of sulfur dioxide at the region, where the plant was damaged, showed that the area was affected by exhausted gas from the pollution source. Especially, this area was affected more deeply at summer than any other season.

The Toxicity of Nitrogen Dioxide Gas on Fig Plant (이산화질소 가스에 의한 무화과 나무의 피해 양상)

  • Kim, Yoo-Hak;Choi, Byeong-Ryeol;Kim, Myung-Sook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.978-980
    • /
    • 2010
  • This study was conducted to observe the cause of injury of fig plant. Nitrogen dioxide gas can be evolved at low pH or reduced in soil. Fig plant cultivated with nutrient solution was wilted or withered. Injury symptom for nutrient solution containing nitrous acid was worse as pH of soil decreased. However, increase in pH of nutrient solution treated with increasing $Ca(OH)_2$ solution prevented nutrient solution from producing nitrogen dioxide gas. Recovery of the fig plant by pH increase indicated that the cause of injury was nitrogen dioxide gas.

Plant Extracts and Plant-Derived Compounds: Promising Players in Countermeasure Strategy Against Radiological Exposure: A Review

  • Kma, Lakhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2405-2425
    • /
    • 2014
  • Radiation exposure leads to several pathophysiological conditions, including oxidative damage, inflammation and fibrosis, thereby affecting the survival of organisms. This review explores the radiation countermeasure properties of fourteen (14) plant extracts or plant-derived compounds against these cellular manifestations. It was aimed at evaluating the possible role of plants or its constituents in radiation countermeasure strategy. All the 14 plant extracts or compounds derived from it and considered in this review have shown some radioprotection in different in vivo, ex-vivo and or in vitro models of radiological injury. However, few have demonstrated advantages over the others. C. majus possessing antioxidant, anti-inflammatory and immunomodulatory effects appears to be promising in radioprotection. Its crude extracts as well as various alkaloids and flavonoids derived from it, have shown to enhance survival rate in irradiated mice. Similarly, curcumin with its antioxidant and the ability to ameliorate late effect of radiation exposure, combined with improvement in survival in experimental animal following irradiation, makes it another probable candidate against radiological injury. Furthermore, the extracts of P. hexandrum and P. kurroa in combine treatment regime, M. piperita, E. officinalis, A. sinensis, nutmeg, genistein and ginsan warrants further studies on their radioprotective potentials. However, one that has received a lot of attention is the dietary flaxseed. The scavenging ability against radiation-induced free radicals, prevention of radiation-induced lipid peroxidation, reduction in radiation cachexia, level of inflammatory cytokines and fibrosis, are some of the remarkable characteristics of flaxseed in animal models of radiation injury. While countering the harmful effects of radiation exposure, it has shown its ability to enhance survival rate in experimental animals. Further, flaxseed has been tested and found to be equally effective when administered before or after irradiation, and against low doses (${\leq}5Gy$) to the whole body or high doses (12-13.5 Gy) to the whole thorax. This is particularly relevant since apart from the possibility of using it in pre-conditioning regime in radiotherapy, it could also be used during nuclear plant leakage/accidents and radiological terrorism, which are not pre-determined scenarios. However, considering the infancy of the field of plant-based radioprotectors, all the above-mentioned plant extracts/plant-derived compounds deserves further stringent study in different models of radiation injury.

Nature of Cold Injury and Resistance in Wheat and Barley (맥류의 한해와 내동성에 관하여)

  • 남윤일;연규복;구본철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.96-114
    • /
    • 1989
  • There are several meterorolgical stresses in the winter cereal crops. Among these stresses, cold injury is one of the most important stresses for wheat and barley production in Korea. The reduction in grain yield of the wheat and barley due to cold injury has occurred almost every year in Korea. The objective of the study was to get the basic information in relation to the cold injury and to detect the method minimizing the damage of cold injury. When the air temperature was the ranges of -13$^{\circ}C$ to -15$^{\circ}C$, the soil temperature at the crown part of the plant was very stable, whereas in the ranges of -2$^{\circ}C$ to -3$^{\circ}C$ the soil surface temperature was more unstable and cold than air and subterranean temperatures. The different parts of the plant in wheat and barley possess the different levels of cold hardiness. In comparison to the cold hardiness of plant parts, the leaf and crown are the less sensitive to cold injury than root and vascular transitional zone. The type and extent of stress is determined by the redistribution pattern of water during freezing. These types from freezing processes were three types: a) Equilibrium freezing pattern b) Non -equilibrium freezing pattern, c) Non-equilibrium freezing pattern typical of tender tissues. Cold hardiness in wheat plants were more harder than barley plants at vegitative stage, but inverted at the reproductive stage. Injuries by low temperature during the seasons of barley cultivation in Korea were occured mainly in four stage; in the first and third stage, frost injury occurs, the second stage, freezing injury, and the fourth stage, chilling injury.

  • PDF

Injury Symptom of Egg Plant Grown in a High pH Rockwool Amended with Ammonium Phosphate (인산암모늄 처리 고산도 암면에서 자란 가지생육장해증상)

  • Kim, Yoo-Hak;Lee, Hyeong-Yong;Kim, Myung-Sook;Kang, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.975-977
    • /
    • 2010
  • Ammonium nitrogen is volatilized as ammonia at high pH soil. This study was conducted to observe an injury cause of egg plant grown in a high pH rockwool amended with ammonium phosphate. The etiolation symptom (yellowing) was appeared on veins of a leaf but not in healthy root when nutrient solution containing ammonium phosphate in addition to essential elements was applied in a top soil of which pH was 7.8. However, the same symptom did not appeared in the egg plant from the top soil in which the nutrition solution containing potassium phosphate instead of ammonium phosphate was applied. pHs were similar between these two different solutions. This revealed that the injury was caused by ammonia gas.

Determination of Economic Injury Levels (EILs) and Control Thresholds (CTs) of Aphis egomae (Hom.: Aphididae) in Green Perilla (들깨진딧물의 경제적 피해수준과 요방제수준 설정에 관한 연구)

  • Choi, Yong-Seok;Park, Deok-Gi;Han, Ik-Soo;Choe, Kwang-Ryul
    • Korean journal of applied entomology
    • /
    • v.45 no.3 s.144
    • /
    • pp.317-325
    • /
    • 2006
  • According to the preceding survey on insect pests of the green perilla, Perilla frutescens var. japonica HARA, The major pests were Aphis egomae Shinji, Pyrausta panopealis (Walker), Tetranychus urticae Koch, Polyphagotarsonemus lotus Banks, Tetranychus kanzawai Kishida at Guemsan, Chungnam, 2004. Aphis egomae causes nearly 100% injury of the green perilla in uncontrolled green houses. A field study was conducted to estimate economic injury levels (EILs) and control thresholds (CTs) for A. egomae injuring green perilla in green houses. Different densities of A. egomae ranged from 1 to 80 aphids per 100 plants in early inoculation. The mean injurying rate of plant was 2.4% to 40.5% at the end of June at differently inoculated levels. The economic loss time calculated by the ratio of cost managing aphid to market price (C/V) (C: cost managing aphid, V: Market price) in early season (from May to 13. June) was 5.8% and in peak season (from 13. June to 30. June) was 9.3%. Economic injury level in early and peak season was 5.3 aphids per plant and economic injury levels in peak season were 0.6 aphids per plant and 7.6% injured rate of plant. The control thresholds calculated by 80% level of economic injury level in peak season were 0.5aphids per plant and 6.1% injury rate of plant, respectively.

Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury

  • Yu, Yingli;Wang, Min;Chen, Rongchang;Sun, Xiao;Sun, Guibo;Sun, Xiaobo
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.642-653
    • /
    • 2021
  • Background: Effective strategies are dramatically needed to prevent and improve the recovery from myocardial ischemia and reperfusion (I/R) injury. Direct interactions between the mitochondria and endoplasmic reticulum (ER) during heart diseases have been recently investigated. This study was designed to explore the cardioprotective effects of gypenoside XVII (GP-17) against I/R injury. The roles of ER stress, mitochondrial injury, and their crosstalk within I/R injury and in GP-17einduced cardioprotection are also explored. Methods: Cardiac contractility function was recorded in Langendorff-perfused rat hearts. The effects of GP-17 on mitochondrial function including mitochondrial permeability transition pore opening, reactive oxygen species production, and respiratory function were determined using fluorescence detection kits on mitochondria isolated from the rat hearts. H9c2 cardiomyocytes were used to explore the effects of GP-17 on hypoxia/reoxygenation. Results: We found that GP-17 inhibits myocardial apoptosis, reduces cardiac dysfunction, and improves contractile recovery in rat hearts. Our results also demonstrate that apoptosis induced by I/R is predominantly mediated by ER stress and associated with mitochondrial injury. Moreover, the cardioprotective effects of GP-17 are controlled by the PI3K/AKT and P38 signaling pathways. Conclusion: GP-17 inhibits I/R-induced mitochondrial injury by delaying the onset of ER stress through the PI3K/AKT and P38 signaling pathways.

Identification of urinary microRNA biomarkers for in vivo gentamicin-induced nephrotoxicity models

  • Jeon, Byung-Suk;Lee, Soo-ho;Hwang, So-Ryeon;Yi, Hee;Bang, Ji-Hyun;Tham, Nga Thi Thu;Lee, Hyun-Kyoung;Woo, Gye-Hyeong;Kang, Hwan-Goo;Ku, Hyun-Ok
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.81.1-81.10
    • /
    • 2020
  • Background: Although previous in vivo studies explored urinary microRNA (miRNA), there is no agreement on nephrotoxicity-specific miRNA biomarkers. Objectives: In this study, we assessed whether urinary miRNAs could be employed as biomarkers for nephrotoxicity. Methods: For this, literature-based candidate miRNAs were identified by reviewing the previous studies. Female Sprague-Dawley rats received subcutaneous injections of a single dose or repeated doses (3 consecutive days) of gentamicin (GEN; 137 or 412 mg/kg). The expression of miRNAs was analyzed by real-time reverse transcription-polymerase chain reaction in 16 h pooled urine from GEN-treated rats. Results: GEN-induced acute kidney injury was confirmed by the presence of tubular necrosis. We identified let-7g-5p, miR-21-3p, 26b-3p, 192-5p, and 378a-3p significantly upregulated in the urine of GEN-treated rats with the appearance of the necrosis in proximal tubules. Specifically, miR-26-3p, 192-5p, and 378a-3p with highly expressed levels in urine of rats with GEN-induced acute tubular injury were considered to have sensitivities comparable to clinical biomarkers, such as blood urea nitrogen, serum creatinine, and urinary kidney injury molecule protein. Conclusions: These results indicated the potential involvement of urinary miRNAs in chemical-induced nephrotoxicity, suggesting that certain miRNAs could serve as biomarkers for acute nephrotoxicity.

A Study on the Resistance and the Sensitivity of Plants to $SO_2$ Gas ($SO_2$ 가스에 對한 植物의 感受性 및 耐性에 關한 硏究)

  • 金貞圭;裵貞伍;金在鳳;朴在桂
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.1-8
    • /
    • 1986
  • To obtain the guidance of plants sensitivity or resistance to $SO_2$ gas, 16 species, 25 varieties of plants were exposed to 0, 0.2, 0.4, 0.7 and 1.5 ppm of $SO_2$ gas in controlled environmental chamber and the visible injury on the plants was observed. Plant sensitivity and/or resistance rankings at each guidance appeared different, based on first injured time, injury degree, and injury index. Only 10 varieties of plant are equal in the ranking at different base. It is concluded that recommended guidance for sensitivity and resistance of plants to $SO_2$ gas are the first injured time and the injury degree, respectively.

  • PDF