DOI QR코드

DOI QR Code

Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury

  • Yu, Yingli (Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Wang, Min (Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Chen, Rongchang (Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Sun, Xiao (Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Sun, Guibo (Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Sun, Xiaobo (Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences)
  • Received : 2019.02.26
  • Accepted : 2021.09.25
  • Published : 2021.11.15

Abstract

Background: Effective strategies are dramatically needed to prevent and improve the recovery from myocardial ischemia and reperfusion (I/R) injury. Direct interactions between the mitochondria and endoplasmic reticulum (ER) during heart diseases have been recently investigated. This study was designed to explore the cardioprotective effects of gypenoside XVII (GP-17) against I/R injury. The roles of ER stress, mitochondrial injury, and their crosstalk within I/R injury and in GP-17einduced cardioprotection are also explored. Methods: Cardiac contractility function was recorded in Langendorff-perfused rat hearts. The effects of GP-17 on mitochondrial function including mitochondrial permeability transition pore opening, reactive oxygen species production, and respiratory function were determined using fluorescence detection kits on mitochondria isolated from the rat hearts. H9c2 cardiomyocytes were used to explore the effects of GP-17 on hypoxia/reoxygenation. Results: We found that GP-17 inhibits myocardial apoptosis, reduces cardiac dysfunction, and improves contractile recovery in rat hearts. Our results also demonstrate that apoptosis induced by I/R is predominantly mediated by ER stress and associated with mitochondrial injury. Moreover, the cardioprotective effects of GP-17 are controlled by the PI3K/AKT and P38 signaling pathways. Conclusion: GP-17 inhibits I/R-induced mitochondrial injury by delaying the onset of ER stress through the PI3K/AKT and P38 signaling pathways.

Keywords

Acknowledgement

This study was funded by the National Natural Science Foundation of China, China (Grant no. 81773936); CAMS Innovation Fund for Medical Sciences, China (CIFMS, No. 2016-I2M-1-012); the Drug Innovation Major Project, China (No. 2018ZX09711-001-009).

References

  1. Johnson JA, Cavallari LH. Pharmacogenetics and cardiovascular disease-implications for personalized medicine. Pharmacological Reviews 2013 Jul;65(3):987-1009. PubMed PMID: 23686351. Pubmed Central PMCID: 3698938. https://doi.org/10.1124/pr.112.007252
  2. Duehrkop C, Rieben R. Ischemia/reperfusion injury: effect of simultaneous inhibition of plasma cascade systems versus specific complement inhibition. Biochemical Pharmacology 2014 Mar 1;88(1):12-22. PubMed PMID: 24384116. https://doi.org/10.1016/j.bcp.2013.12.013
  3. Logue SE, Gustafsson AB, Samali A, Gottlieb RA. Ischemia/reperfusion injury at the intersection with cell death. Journal of Molecular and Cellular Cardiology 2005 Jan;38(1):21-33. PubMed PMID: 15623419. https://doi.org/10.1016/j.yjmcc.2004.11.009
  4. Yu Y, Sun G, Luo Y, Wang M, Chen R, Zhang J, Ai Q, Xing N, Sun X. Cardioprotective effects of Notoginsenoside R1 against ischemia/reperfusion injuries by regulating oxidative stress- and endoplasmic reticulum stress-related signaling pathways. Scientific Reports 2016;6:21730. PubMed PMID: 26888485. Pubmed Central PMCID: 4757886. https://doi.org/10.1038/srep21730
  5. Chan JY, Biden TJ, Laybutt DR. Cross-talk between the unfolded protein response and nuclear factor-kappaB signalling pathways regulates cytokine-mediated beta cell death in MIN6 cells and isolated mouse islets. Diabetologia 2012 Nov;55(11):2999-3009. PubMed PMID: 22893028. https://doi.org/10.1007/s00125-012-2657-3
  6. Sozen E, Karademir B, Ozer NK. Basic mechanisms in endoplasmic reticulum stress and relation to cardiovascular diseases. Free Radical Biology & Medicine 2015 Jan;78C:30-41. PubMed PMID: 25452144. https://doi.org/10.1016/j.freeradbiomed.2014.09.031
  7. Dejeans N, Tajeddine N, Beck R, Verrax J, Taper H, Gailly P, Calderon PB. Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells. Biochemical Pharmacology 2010 May 1;79(9):1221-30. PubMed PMID: 20006589. https://doi.org/10.1016/j.bcp.2009.12.009
  8. Prola A, Nichtova Z, Da Silva JP, Piquereau J, Monceaux K, Guilbert A, Gressette M, Ventura-Clapier R, Garnier A, Zahradnik I, et al. ER stress induces cardiac dysfunction through architectural modifications and alteration of mitochondrial function in cardiomyocytes. Cardiovascular Research 2018. cvy197-cvy.
  9. Giorgi C, Missiroli S, Patergnani S, Duszynski J, Wieckowski MR, Pinton P. Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxidants & Redox Signaling 2015 Apr 20;22(12):995-1019. PubMed PMID: 25557408. https://doi.org/10.1089/ars.2014.6223
  10. Dorn 2nd GW. Mitochondrial dynamism and heart disease: changing shape and shaping change. EMBO Molecular Medicine 2015 Jul;7(7):865-77. PubMed PMID: 25861797. Pubmed Central PMCID: 4520653. https://doi.org/10.15252/emmm.201404575
  11. Ong SB, Samangouei P, Kalkhoran SB, Hausenloy DJ. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. Journal of Molecular and Cellular Cardiology 2015 Jan;78:23-34. PubMed PMID: 25446182. https://doi.org/10.1016/j.yjmcc.2014.11.005
  12. Sun J, Sun G, Meng X, Wang H, Wang M, Qin M, Ma B, Luo Y, Yu Y, Chen R, et al. Ginsenoside RK3 prevents hypoxia-reoxygenation induced apoptosis in H9c2 cardiomyocytes via AKT and MAPK pathway. Evidence-based complementary and alternative medicine. eCAM 2013;2013:690190. PubMed PMID: 23935671. Pubmed Central PMCID: 3712237.
  13. Han SY, Li HX, Ma X, Zhang K, Ma ZZ, Jiang Y, Tu PF. Evaluation of the anti-myocardial ischemia effect of individual and combined extracts of Panax notoginseng and Carthamus tinctorius in rats. Journal of Ethnopharmacology 2013 Feb 13;145(3):722-7. PubMed PMID: 23237935. https://doi.org/10.1016/j.jep.2012.11.036
  14. Meng X, Wang M, Sun G, Ye J, Zhou Y, Dong X, Wang T, Lu S, Sun X. Attenuation of Abeta25-35-induced parallel autophagic and apoptotic cell death by gypenoside XVII through the estrogen receptor-dependent activation of Nrf2/ARE pathways. Toxicology and Applied Pharmacology 2014 Aug 15;279(1):63-75. PubMed PMID: 24726523. https://doi.org/10.1016/j.taap.2014.03.026
  15. Meng X, Luo Y, Liang T, Wang M, Zhao J, Sun G, Sun X. Gypenoside XVII enhances lysosome biogenesis and autophagy Flux and accelerates autophagic clearance of amyloid-beta through TFEB activation. Journal of Alzheimer's Disease : JAD 2016 Apr 5. PubMed PMID: 27060963.
  16. Rosano GM, Vitale C, Volterrani M. Pharmacological management of chronic stable Angina: focus on ranolazine. Cardiovascular Drugs and Therapy 2016 Aug;30(4):393-8. PubMed PMID: 27417323. https://doi.org/10.1007/s10557-016-6674-1
  17. Krebs J, Agellon LB, Michalak M. Ca(2+) homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling. Biochemical and Biophysical Research Communications 2015 Apr 24;460(1):114-21. PubMed PMID: 25998740. https://doi.org/10.1016/j.bbrc.2015.02.004
  18. Liu CW, Yang F, Cheng SZ, Liu Y, Wan LH, Cong HL. Rosuvastatin post-conditioning protects isolated hearts against ischemia-reperfusion injury: the role of radical oxygen species, PI3K-Akt-GSK-3beta pathway and mitochondrial permeability transition pore. Cardiovascular Therapeutics 2016 Aug 31. PubMed PMID: 27580017.
  19. Pulford BR, Kluger J. Ranolazine therapy in cardiac arrhythmias. Pacing and clinical electrophysiology. PACE 2016 Sep;39(9):1006-15. PubMed PMID: 27358212. https://doi.org/10.1111/pace.12905
  20. Palencia G, Medrano JA, Ortiz-Plata A, Farfan DJ, Sotelo J, Sanchez A, Trejo-Solis C. Anti-apoptotic, anti-oxidant, and anti-inflammatory effects of thalidomide on cerebral ischemia/reperfusion injury in rats. Journal of the Neurological Sciences 2015 Apr 15;351(1-2):78-87. PubMed PMID: 25818676. https://doi.org/10.1016/j.jns.2015.02.043
  21. Horstkotte J, Perisic T, Schneider M, Lange P, Schroeder M, Kiermayer C, Hinkel R, Ziegler T, Mandal PK, David R, et al. Mitochondrial thioredoxin reductase is essential for early postischemic myocardial protection. Circulation 2011 Dec 20;124(25):2892-902. PubMed PMID: 22144571. https://doi.org/10.1161/CIRCULATIONAHA.111.059253
  22. McLaughlin M, Vandenbroeck K. The endoplasmic reticulum protein folding factory and its chaperones: new targets for drug discovery? British Journal of Pharmacology 2011 Jan;162(2):328-45. PubMed PMID: 20942857. Pubmed Central PMCID: 3031055. https://doi.org/10.1111/j.1476-5381.2010.01064.x
  23. Li H, Zhu X, Fang F, Jiang D, Tang L. Down-regulation of GRP78 enhances apoptosis via CHOP pathway in retinal ischemia-reperfusion injury. Neuroscience Letters 2014 Jul 11;575:68-73. PubMed PMID: 24880098. https://doi.org/10.1016/j.neulet.2014.05.042
  24. Dong M, Hu N, Hua Y, Xu X, Kandadi MR, Guo R, Jiang S, Nair S, Hu D, Ren J. Chronic Akt activation attenuated lipopolysaccharide-induced cardiac dysfunction via Akt/GSK3beta-dependent inhibition of apoptosis and ER stress. Biochimica et Biophysica Acta 2013 Jun;1832(6):848-63. PubMed PMID: 23474308. Pubmed Central PMCID: 3653446. https://doi.org/10.1016/j.bbadis.2013.02.023
  25. Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacological Reviews 2014 Oct;66(4):1142-74. PubMed PMID: 25261534. https://doi.org/10.1124/pr.113.008300
  26. Yuan Y, Guo Q, Ye Z, Pingping X, Wang N, Song Z. Ischemic postconditioning protects brain from ischemia/reperfusion injury by attenuating endoplasmic reticulum stress-induced apoptosis through PI3K-Akt pathway. Brain Research 2011 Jan 7;1367:85-93. PubMed PMID: 20940001. https://doi.org/10.1016/j.brainres.2010.10.017
  27. Yu L, Lu M, Wang P, Chen X. Trichostatin A ameliorates myocardial ischemia/reperfusion injury through inhibition of endoplasmic reticulum stress-induced apoptosis. Archives of Medical Research 2012 Apr;43(3):190-6. PubMed PMID: 22564421. https://doi.org/10.1016/j.arcmed.2012.04.007
  28. Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C. When ER stress reaches a dead end. Biochimica et biophysica acta 2013 Dec;1833(12):3507-17. PubMed PMID: 23988738. https://doi.org/10.1016/j.bbamcr.2013.07.024
  29. Lebeau J, Saunders JM, Moraes VWR, Madhavan A, Madrazo N, Anthony MC, Wiseman RL. The PERK arm of the unfolded protein response regulates mitochondrial morphology during acute endoplasmic reticulum stress. Cell Reports 2018 Mar 13;22(11):2827-36. PubMed PMID: 29539413. Pubmed Central PMCID: 5870888. https://doi.org/10.1016/j.celrep.2018.02.055
  30. Marwarha G, Dasari B, Ghribi O. Endoplasmic reticulum stress-induced CHOP activation mediates the down-regulation of leptin in human neuroblastoma SH-SY5Y cells treated with the oxysterol 27-hydroxycholesterol. Cellular Signalling 2012 Feb;24(2):484-92. PubMed PMID: 21983012. Pubmed Central PMCID: 3237961. https://doi.org/10.1016/j.cellsig.2011.09.029
  31. Kadowaki H, Nishitoh H, Ichijo H. Survival and apoptosis signals in ER stress: the role of protein kinases. Journal of Chemical Neuroanatomy 2004 Sep;28(1-2):93-100. PubMed PMID: 15363494. https://doi.org/10.1016/j.jchemneu.2004.05.004
  32. Bagur R, Tanguy S, Foriel S, Grichine A, Sanchez C, Pernet-Gallay K, Kaambre T, Kuznetsov AV, Usson Y, Boucher F, et al. The impact of cardiac ischemia/reperfusion on the mitochondria-cytoskeleton interactions. Biochimica et Biophysica Acta 2016 Jun;1862(6):1159-71. PubMed PMID: 26976332. https://doi.org/10.1016/j.bbadis.2016.03.009
  33. Bernard-Marissal N, Medard JJ, Azzedine H, Chrast R. Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration. Brain : A Journal of Neurology 2015 Apr;138(Pt 4):875-90. PubMed PMID: 25678561. https://doi.org/10.1093/brain/awv008
  34. Lange M, Zeng Y, Knight A, Windebank A, Trushina E. Comprehensive method for culturing embryonic dorsal root ganglion neurons for Seahorse extracellular Flux XF24 analysis. Frontiers in Neurology 2012;3:175. PubMed PMID: 23248613. Pubmed Central PMCID: 3522103. https://doi.org/10.3389/fneur.2012.00175
  35. Rogers GW, Brand MD, Petrosyan S, Ashok D, Elorza AA, Ferrick DA, Murphy AN. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PloS One 2011;6(7):e21746. PubMed PMID: 21799747. Pubmed Central PMCID: 3143121. https://doi.org/10.1371/journal.pone.0021746
  36. Yan XH, Guo XY, Jiao FY, Liu X, Liu Y. Activation of large-conductance Ca(2+)-activated K(+) channels inhibits glutamate-induced oxidative stress through attenuating ER stress and mitochondrial dysfunction. Neurochemistry International 2015 Nov;90:28-35. PubMed PMID: 26163046. https://doi.org/10.1016/j.neuint.2015.07.004
  37. Cuadrado-Berrocal I, Gomez-Gaviro MV, Benito Y, Barrio A, Bermejo J, Fernandez-Santos ME, Sanchez PL, Desco M, Fernandez-Aviles F, Fernandez-Velasco M, et al. A labdane diterpene exerts ex vivo and in vivo cardioprotection against post-ischemic injury: involvement of AKT-dependent mechanisms. Biochemical Pharmacology 2014 Dec 31. PubMed PMID: 25557296.
  38. Sun GB, Sun H, Meng XB, Hu J, Zhang Q, Liu B, Wang M, Xu HB, Sun XB. Aconitine-induced Ca2+ overload causes arrhythmia and triggers apoptosis through p38 MAPK signaling pathway in rats. Toxicology and Applied Pharmacology 2014 Aug 15;279(1):8-22. PubMed PMID: 24840785. https://doi.org/10.1016/j.taap.2014.05.005